ByteCode 2010

Bytecode 2010

5th workshop on Bytecode Semantics, Verification, Analysis and
Transformation

Preface

This volume contains the proceedings of the Bytecode 2010 workshop, the Fifth
Workshop on Bytecode Semantics, Verification, Analysis and Transformation, held
in Paphos, Cyprus, on the 27th of March 2010 as part of ETAPS 2010.

Bytecode, such as produced by e.g. Java and .NET compilers, has become an
important topic of interest, both for industry and academia. The industrial inter-
est stems from the fact that bytecode is typically used for the Internet and mobile
devices (smartcards, phones, etc.), where security is a major issue. Moreover, byte-
code is device-independent and allows dynamic loading of classes, which provides
an extra challenge for the application of formal methods. In addition, the unstruc-
turedness of the code and the pervasive presence of the operand stack also provide
extra challenges for the analysis of bytecode. This workshop focuses on the latest
developments in the semantics, verification, analysis, and transformation of byte-
code; encompassing both new theoretical results and tool demonstrations. There
were 8 submissions. Each submission was reviewed by at least 3 programme com-
mittee members. The committee decided to accept 5 papers. The programme also
includes 4 invited talks: Francesco Logozzo, Mark Marron, Matthew Parkinson and
Fausto Spoto.

As the workshop chair, I would like to thank members of the program committee
and all anonymous referees, for their hard work, particularly as much of this had to
be done over their Christmas holidays.

David Pichardie

Programme Committee External Reviewers

David Aspinall Frédéric Dabrowski
Stephen Chong Kenneth MacKenzie
Alessandro Coglio Martin Toft

Pierre Crégut SongTao Xia

Samir Genaim

Rene Rydhof Hansen
Bart Jacobs

Gerwin Klein

Victor Kuncak
Patrick Lam
Francesco Logozzo
Matthew Parkinson
David Pichardie
Fausto Spoto

Table of Contents

Invited Talks

1.

Francesco Logozzo. Language-agnostic Contract specification and
checking with CodeContracts and Clousot..........................

Mark Marron. Spec-tacular: heap assertions for .net bytecode......
Matthew Parkinson. The design of jStar

Fausto Spoto. Static Analysis of Java: from the Julia Perspective ..

Regular Research Papers

5.

Jacek Chrzgszcz, Patryk Czarnik and Aleksy Schubert. A dozen in-
structions make Java bytecode...........ot

Jaroslav Bauml and Premek Brada. Reconstruction of Type Infor-
mation from Java Bytecode for Component Compatibility

Philippe Wang, Adrien Jonguet and Emmanuel Chailloux. Non-
Intrusive Structural Coverage for Objective Caml..................

Michael FEichberg and Andreas Sewe. Encoding the Java Virtual Ma-
chine’s Instruction Set o

Tool Demo Papers

9.

Jevgeni Kabanov. JRebel Tool Demo........................o..

10

11

26

41

56

ByteCode 2010

Language-agnostic Contract specification and
checking with CodeContracts and Clousot

Francesco Logozzo

Microsoft Research, USA

Abstract

CodeContracts allow specifying contracts (preconditions, postconditions and object invariants) in a language
agnostic form. Contracts are expressed as calls to static methods of the homonymous class included in .NET
4.0. They are serialized and persisted as bytecode, achieving language agnosticism. Runtime checking is
performed via bytecode rewriting. The static checker, Clousot, directly analyzes the bytecode to validate
the user-provided contracts as well as the absence of common runtime errors. Clousot is based on abstract
interpretation, and as such it can presents a higher level of automatism (e.g. for the inference of loop
invariants, or postconditions) with respect to similar tools. Also, it scales up to large codebases thanks to
the use of new numerical abstract domains and adaptive techniques (which I will sketch in the talk).

ByteCode 2010

Spec-tacular: heap assertions for .net bytecode
(Extended Abstract)

Mark Marron!

IMDEA Software, Spain

1 Background

The widespread adoption of object-oriented and memory managed programming languages
has lead to programs that make extensive use of rich pointer structures and that use data
(objects) as a central part of organizing the program structure. Thus, understanding the
memory state of the program is an increasingly critical part of understanding the behav-
ior of the program (for both the human programmer and automated tools that transform
or analyze the program). This increasing difficulty (and importance) of understanding the
behavior of a program is occurring at the same time as the growing need to take advan-
tage of parallel hardware (plus complex memory hierarchies), and decreasing tolerance for
software defects. This confluence of events is making the development of practical heap
analysis tools an increasingly important area of research.

While there is a large body of work on heap analysis techniques, ranging from simple
points-to analyses [2,13,23,28] to very powerful shape analysis techniques [1,4,12,24,25],
there has been a relatively small amount of work on analysis that fall in this middle ground
of this spectrum (producing relatively precise results while remaining computationally
tractable). Some of the more notable work in this area include work done on identify-
ing data structures on the heap [5,15,17], and work on pair/set sharing [22,26], heap con-
stancy [6,11,15], nullness [14,27], and escape [10,16,29] information. Our work is focused
on developing a rich model for these properties (and a number of others) that can precisely
identify data structures on the heap (similar to the work in [15] but with a more precise
model) and then track, sharing, shape, nullity, use/mod, and object lifetime information on
the set of data structures identified by the region analysis (thus tracking the information
with a finer resolution than previous approaches).

In this extended abstract we focus on the description of commonly useful heap prop-
erties which we can extract from the shape analysis results and that can be inserted into

! Email: mark.marron@imdea.org

mailto:mark.marron@imdea.org

the program source as pre/post conditions. Our objective, in the Spec-tacular specification
tool, is not to produce the most detailed conditions possible but instead to produce a rich
set of pre/post annotations that are useful to the developer and other analysis tools without
overwhelming the end user with (often un-needed) details inferred by the underlying shape
analysis.

2 Spec-tacular Tool

The Spec-tacular tool is a static analysis that integrated with Visual Studio™ as an addin.
It runs on the .net IL that is produced for a C# program and then inserts select inferred heap
assertions back into the source code as method pre/post conditions (and class invariants).
The goal of this tool is to export a set of simple but commonly useful properties back into
the source code via Code Contracts [8] so that they can be used as documentation for the
developer and by other analysis tools such as Clousot [7]. With this goal in mind we will
only export a fraction of the information that can be inferred by the analysis tool to avoid
overwhelming the user with information.

We consider a program state to be composed of local and argument variables, static
fields, variables on the call stack, heap objects (Obs), and references (root references and
pointers stored in the heap, Refs). In the following definitions we use the notation r — o to
indicate that the reference parameter » points to object o (and similarly the notation o Lo
to indicate that the object o refers to object o via pointer p). We use the notation o ~+ o’
to denote that there is a non-empty path of references (p; ... py) in the concrete heap that
starts at o and leads to o’. Similarly we use the notation r ~» o’ to denote that 3 an object o
and path s.t. the root reference r — o0 A 0~ 0'.

We note that the set of extracted heap properties illustrate one of the advantages of
explicitly modeling the data structures on the heap. For example in the, Constness property
we can not only determine if a parameter is constant or not as a binary concept but we can
give more precise information on partial constness (i.e. the entire heap reachable from the
variable may not be constant but the object itself may be constant and we can distinguish
these cases, or at even a finer level of detail if desired).

Argument Properties.
The first category of properties covers standard information on sharing, nullity, and
constness of the heap based argument variables.

Nullity. Given an argument variable » we generate the following nullity assertions on the
argument variable:
e NonNull(r) < do € Obs and r — o.
e Null(r) < r = null.

Sharing. Given two argument variables r and ' we generate the following assertions on
the sharing relations between them:
o Alias(r,7)< may3o € Obsst.r—o A1 —o.
* Reachable(r, ') < may 3 0 € Obs and a path s.t. r~ o0 A7 — o.

Ownership. Given an argument variable » we generate the ownership assertion on the
parameter that holds whenever it is non-null:

5

Owner(r) where r points to object 0 < A any other reference r/ (argument variable,
variable on the call stack, or static field) s.t. 7/ — o or there is a path where r’ ~ o.

Constness. Given an argument variable r we generate the following constness assertions
on the argument variable:
* NotMod(r) < ¥ o € Obs s.t. r — o or on some path where » ~» 0 no fields of o are
modified during the method call.
e NotModlmm(r) < r = null Vv for the single o € Obs s.t. r — o no fields of o are
modified during the method call.

Container Argument Properties.

The second category is specific to parameters that are container types (Arrays, Lists,
and Sets). Often information about the contents of these container arguments is critical to
understanding the behavior of a method and so the analysis (as well as the assertion output)
treats them specially.

Empty. Given a container argument variable r. we generate an assertion on the size of that
holds whenever r. is non-null and there is a container o. € Obs s.t. ro — 0,:
e Empty(r.) < o..Count = 0.
* NonEmpty(r;) < o..Count > 0.

Sharing. Given a container argument variable r, we generate an assertion to indicate if the
container may have duplicate entries that holds whenever r, is non-null and there is a
container o, € Obs s.t. r. — o,:

UniqueEntries(r.) < Y p € o, either p = null or |{o | p € 0. No. 2> 0} = 1.

Null Entry. Given a container argument variable r. we generate an assertion that holds
whenever r. is non-null and there is a container o. € Obs s.t. r. — o., and indicates if
the container may contain null:

EntriesNonNull(r.) < ¥ p € o¢, p # null.

Return Value Properties.

The final group of assertions that the analysis extracts are related to the return value
from a method (if the return value is a heap reference). As with most other approaches we
assume that a special name exists, we use v, for referring to the return value.

Nullity. Given the return variable we generate a nullity assertion:
e NonNullRet() < 1 object 0 € Obs and v,y — 0.
e NullRet() < Vyer = null.

Freshness. Given the return variable we generate several assertions to specify if the return
value (or some part of the structure it refers to) was freshly allocated in the method call:
o AllRetFresh() < Y o € Obs s.t. v,,; — o or on some path v,,; ~ 0, and o was allocated
in the method call.
* MustRetOnlyFresh() < r = null, or for the single o € Obs where v,,; — 0, and o must
have been allocated in the method call.
* MayRetOnlyFresh() < r = null, or for the single o € Obs where v,,; — o, and o may
have been allocated in the method call.

Relation to Parameters. Given the return variable we generate several assertions to spec-
ify how it may be connected to the argument parameters:
* RetAlias(r) < may 3 o € Obs and argument variable 7 s.t. ¥ — 0 A vy — 0.
* RetReachable(r) < may 30 € Obs s.t. (r — o0\ r~>0) A Ve — 0.

3 Model and Analysis

As mentioned in the previously, the exported properties (to avoid overwhelming the user
with information) are a small subset of the information actually inferred by the model and
analysis. As an example of this reduction, the analysis internally computes enough infor-
mation to output a complete set of access paths, similar to the paths from [9], from the
parameters indicating which objects are shared, as well as which are used and modified.
While this information may be useful to other analysis tools it is too much for the program-
mer to wade through.

For complete discussions of what properties are computed by the underlying analysis
we provide references to the most relevant publications from our work on the general heap
analysis problem. The general decomposition of the heap into related data structures is
presented in [18] which describes the heuristics used to identify recursive and composite
data structures on the heap. The techniques used to determine sharing between variables,
data structures, and within collections is the focus of the work in [20]. Techniques for
tracking the use and modification of heap based objects are explored in [21] which de-
scribes techniques for tracking object (data structure) identities across method calls and a
field sensitive method for determining which fields/objects are used/modified in a given
statement or method call. The techniques for tracking nullity and fresh allocation (escape)
are currently in the process of publication. The static analysis is currently able to handle
the majority of the managed .net bytecode and can analyze programs up to 15KLoc in a
few minutes and a 100-200MB of memory (which is exceptionally fast for shape analy-
sis techniques and is sufficient for module level analysis). Our work on interprocedural
dataflow analysis to enable the flow-sensitive, context-sensitive interprocedural analysis of
large programs for this (and other rich heap domains) is covered in [19].

4 Future Work

Our experience with the prototype indicates that it is able to consistently infer interesting
predicates. We believe that these assertions are valuable from the standpoint of program
documentation to aid developers and, even in the restricted form described here, can be
very useful to other analysis and optimization tools. Based on the positive results with our
prototype implementation of the analyzer we are currently in the process of implementing
a full featured version of the analysis based on the CCI [3] framework.

References

[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape analysis for composite data
structures. In CAV, 2007.

[2] M. Berndl, O. Lhoték, F. Qian, L. Hendren, and N. Umanee. Points-to analysis using BDDs. In PLDI, 2003.

[3] Common Compiler Infrastructure. http://ccimetadata.codeplex.com.

7

http://ccimetadata.codeplex.com

[4] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In POPL, 2008.
[5] D. Chase, M. Wegman, and K. Zadeck. Analysis of pointers and structures. In PLDI, 1990.

[6] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of pointer-induced aliases and
side effects. In POPL, 1993.

[7] Clousot. http://msdn.microsoft.com/en-us/devlabs/dd491992. aspx.

[8] Code Contracts. http://research.microsoft.com/en-us/projects/contracts/.

[9] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In PLDI, 1994.
[10] D. Gay and B. Steensgaard. Fast escape analysis and stack allocation for object-based programs. In CC, 2000.
[11] S. Genaim and F. Spoto. Constancy analysis. In FTfJP, 2008.
[12] S. Gulwani and A. Tiwari. An abstract domain for analyzing heap-manipulating low-level software. In CAV, 2007.
[13] M. Hind. Pointer analysis: haven’t we solved this problem yet? In ISSTA, 2001.
[14] L. Hubert. A non-null annotation inferencer for Java bytecode. In PASTE, 2008.

[15] C. Lattner and V. Adve. Data Structure Analysis: An Efficient Context-Sensitive Heap Analysis. Technical Report
UIUCDCS-R-2003-2340, Computer Science Dept., Univ. of Illinois at Urbana-Champaign, Apr 2003.

[16] C. Lattner and V. Adve. Automatic pool allocation: improving performance by controlling data structure layout in the
heap. In PLDI, 2005.

[17] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to analysis with heap cloning practical for the
real world. In PLDI, 2007.

[18] M. Marron, D. Kapur, and M. Hermenegildo. Identification of logically related heap regions. In ISMM, 2009.

[19] M. Marron, O. Lhotdk, and A. Banerjee. Scalable interprocedural heap analysis: A pragmatic approach. In (In
Submission), 2010.

[20] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap analysis in the presence of collection libraries. In
PASTE, 2007.

[21] M. Marron, D. Stefanovic, D. Kapur, and M. Hermenegildo. Identification of heap-carried data dependence via explicit
store heap models. In LCPC, 2008.

[22] M. Méndez-Lojo and M. V. Hermenegildo. Precise set sharing analysis for Java-style programs. In VMCAI, 2008.

[23] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensitivity for points-to and side-effect analyses for Java.
In ISSTA, 2002.

[24] S. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive updating. In POPL,
1996.

[25] S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In POPL, 1999.
[26] S. Secci and F. Spoto. Pair-sharing analysis of object-oriented programs. In SAS, 2005.

[27] F. Spoto. Nullness analysis in boolean form. In SEFM, 2008.

[28] B. Steensgaard. Points-to analysis in almost linear time. In POPL, 1996.

[29] J. Whaley and M. C. Rinard. Compositional pointer and escape analysis for Java programs. In OOPSLA, 1999.

http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://research.microsoft.com/en-us/projects/contracts/

ByteCode 2010

The design of jStar

Matthew Parkinson

University of Cambridge, UK

Abstract

jStar is a program verifier for Java that uses separation logic. In this talk I will present an overview and
demonstration of the tool. I will then go into some of the design choices that aim to make jStar a platform
for developing other research tools.

ByteCode 2010

Static Analysis of Java: from the Julia
Perspective

Fausto Spoto

University of Verona, Italy

Abstract

Verification of real software is recognised as an important topic in software development. Automatic soft-
ware analysis tools for Java play a prominent role there. They are on main street since a long time now
and keep 1mproving every year. We discuss here some of their distinctive aspects, such as genericity, need
of annotations, modularity, correctness, precision, real-time and scalability, with some focus on the Julia
tool for static analysis of Java bytecode. We then discuss their most notable limitations and their perspec-
tive, identifying multi-threading as both the nightmare of next generation tools and a promise for better
scalability and efficiency.

ByteCode 2010

A dozen instructions make Java bytecode'

Jacek Chrzaszcz? Patryk Czarnik® Aleksy Schubert?

Institute of Informatics
University of Warsaw
ul. Banacha 2
02-097 Warsaw
Poland

Abstract

One of the biggest obstacles in the formalisation of the Java bytecode is that the language consists of
200 instructions. However, a rigorous handling of a programming language in the context of program
verification and error detection requires a formalism which is compact in size. Therefore, the actual Java
bytecode instruction set is never used in the context. Instead, the existing formalisations usually cover
a ‘representative’ set of instructions. This paper describes how to reduce the number of instructions in a
systematic and rigorous way into a manageable set of more general operations that cover the full functionality
of the Java bytecode. The factorisation of the instruction set is based on the use of the runtime structures
i}[lchhas operand stack, heap etc. This is achieved by presentation of a formal semantics for the Java Virtual
achine.

Keywords: bytecode, semantics

1 Introduction

The transfer of programs from one party to the other raises the problem of security
of its execution on the receiver’s side. Therefore it is desirable to provide means to
guarantee certain computational properties of the code in the form it travels from
the developer to the consumer. Java bytecode language (JVML in short) is one of
the most popular formats for a code that travels in the Internet and the security
of its execution has already caused practical problems (see [5,8]) which go beyond
the abilities to control the execution by means of Java sandboxing. One of the
possible ways to overcome the problems is to provide a precise mathematical model
for the language, then prove properties of the programs using the model and supply
the travelling program with additional information that will make it possible to
reconstruct the proof efficiently on the code consumer’s side.

This work was partly supported by Polish government grant N N206 493138.
Email: chrzaszcz@mimuw.edu.pl
Email: czarnik@mimuw.edu.pl

W N =

Email: alx@mimuw.edu.pl

mailto:chrzaszcz@mimuw.edu.pl
mailto:czarnik@mimuw.edu.p
mailto:alx@mimuw.edu.pl

CHRZASZCZ, CZARNIK, SCHUBERT

Several formal semantics were proposed for the JVML including the most notable
ones: [1,7,11,13,14,15,16]. These formulations suffer from one of two problems—
either they provide a formal semantics of (almost) all 200 bytecode instructions ®
or they choose a subset of the instructions that represents most of the interesting
features. The drawback of the former option is that the formalisation in this case
is very difficult to operate with as most of the proofs have to be done by induction
on the structure of programs. Therefore the latter option is more often followed by
researchers, but then the particular choice of instruction representatives is often not
related to the actual instructions of the bytecode and is presented with very little
discussion on the issue of the correspondence of the actual instructions to the ones
in the model. The current paper provides the missing discussion and divides the
instructions into groups that follow the same pattern of access to the JVM runtime
structures (such as heap, operand stack etc.). For example, all load instructions
are grouped together, all jumps, including the subroutine ones (jsr and ret), but
also *aload, getfield, checkcast and instanceof form a single group as they
all access the heap and (possibly) put something on the operand stack or raise an
exception. In this way we obtain a factorisation of the whole set of the JVML
instructions to 12 items. The actual lists of instructions can be found in [3].

We believe that it is crucial to come up with a formalisation that is based on a
small number of instructions as then it is much easier to demonstrate the properties
of the language itself —many proofs for such a language are done by induction on
the structure of possible programs. If the number of instructions is limited then the
number of cases to consider in such a proof is small. This is the main reason why
ventures such as EML [10], where the number of semantical rules reaches several
hundred, failed to develop metatheoretical properties, while such as Coq module
system [2] succeeded with this regard. Moreover, it is a standard compiler design
technique to establish a small language that makes easy design of optimisation
techniques. Examples of such languages for Java and its bytecode include BAF,
Jimple and Grimp [17] as well as BIR [6].

Moreover, our rigorous consideration gives the opportunity to present what are
the instructions that really cover the whole spectrum of bytecode behaviours. We
are aware that for certain properties of the JVML a slightly different set of instruc-
tions would be more convenient (e.g. the proofs for interval static analysis require
access to the actual arithmetic operations and then it is desirable to consider them
explicitly). However, one still has a path to reach to all the operations in JVML as
their particular behaviour in our semantics is available through access to appropri-
ate tables associated with our generalised operations. We hope that this solution is
useful in all meta-proofs for JVML as it allows to build a common framework for
many analyses which is important when a verification platform is to be built for
real JVML programs.

Naturally, this paper does not provide the full semantics for the JVML as it
is very complex. In fact, in a few places we make deliberate simplifications of the
semantics in order to stay comprehensive in presentation.

5 The number is even greater when one considers wide instructions as separate.

12

CHRZASZCZ, CZARNIK, SCHUBERT

2 Semantic domains and notation

We give here a small step semantics for the Java bytecode. The general form of a
semantics step is:

Pt h,ts — W ts (2.1)

where P is a program, h,h’ are heaps and ts,ts’ are states of the threads. The
semantic domains of these values are defined in the following way. First, we provide
the description of programs: Prog = [Cnames —p, CDesc|. Programs are partial
functions with finite domain that associate class descriptions from CDesc with class
names from Cnames. The class names are just appropriately defined identifiers,
the class descriptions are defined as CDesc = [Mnames —g,, MDesc] i.e. partial
functions with finite domains that associate method descriptions MDesc with the
method names. Again the method names are just appropriate identifiers while the
method descriptions are somewhat more complicated and defined as

MDesc = [PC — g, Instr] x ExTable
ExTable = [PC x Cnames —,, PC]

where Instr is the set of JVM instructions and ExTable is an exception table for
the method. The intent is that a function in [PC —g, Instr] provides a mapping
from instruction labels to the instructions under the labels. The ExTable returns
the handler address for a given exception origin address and class.

The set of heaps is defined to be the set of

Heap = [Loc x Threadld —,, (Cnames x Monitor x [Fnames — g, Val])]

where Loc is the set of locations (e.g. natural numbers or pointers in the current
architecture) with a distinguished location null (the set Loc\{null} will be denoted
by Loc®), Threadld is the set of the thread identifiers (e.g. natural numbers), Monitor
is the set of monitors which will control the lock counter for the given object, this is
defined precisely later. Fnames is the set of field names and Val is the set of expected
field values i.e. Val = intwWlong---WlLoc. The Threadld is an argument of the heap,
as each thread has its own view of the heap state. The exact way the different views
are synchronised is described by the Java Memory Model [9, Section 17].

The set of thread statesis defined as the set of all finite sets of thread descriptions,
Prn(Thread) x History combined with a state information History which contains an
information needed for the thread scheduler to deterministically select a thread to
execute. A thread description is

Thread = Threadld x ThreadStatus x EvalState x FrameStack

where ThreadStatus represents the current status of the thread i.e. sleeping, blocked,
running, terminated etc. At last, the FrameStack = MethodFrame® contains a se-
quence of the method frames of the form

MethodFrame = Cnames x Mnames x LVals x OpStack x PC
13

CHRZASZCZ, CZARNIK, SCHUBERT

where LVals is the local variable table defined as [Vars —z, Type x Val] with the
set of local variable indices Vars = N, Type being the type of the value in the
given entry and Val the value contained in the local variable table; OpStack is the
operand stack defined as (StackKind x (Valw PC))*, where StackKind represents the
type of the value in the current cell of the stack, note that we have to add PC
type to make sure we can put labels of bytecode instructions used by subroutine
commands; the same set PC is used as the final compound of MethodFrame and the
value points to the currently executed bytecode instruction; EvalState is a set that
represents the information on which exception has been thrown. We may assume
that EvalState = Loc. The special location null is used to mark the situation that
no exception has been thrown. We also assume that certain exceptions, such as
NullPointerException, ClassCastException etc. are preallocated on the heap.
This greatly simplifies the semantics as otherwise a number of semantic rules would
be needed to allocate the exception on the stack and call its constructor before
actially throwing it. And since the simplification does not concern used defined
exceptions we decided not to complicate the semantics.

It is worth mentioning that the semantics we provide here is in the so called
defensive style i.e. we provide the type identification along with the operand stack
and local variables table entries to check if the values stored there have correct type.

We can now define the set of monitors Monitor to be the product Threadld x N.
A pair from the set represents the identifier of the thread that holds the lock and
the number of the times the thread entered the monitor. We assume that the
set Threadld contains a distinguished constant none which is used to represent the
situation when no thread holds the monitor.

A natural operation on the operand stack o is pushing an element e. It is written
as e-0. The examining the top of the stack is done by pattern matching and o = e-0’
means that the stack o contains e at the top followed by the rest in o'.

The data structures which describe the state of the virtual machine are compli-
cated. Therefore we need further notation to retrieve the information from them.
First, we have to introduce the scheduler which chooses the particular thread to
be executed: % : Pg,(Thread) x History — Thread. We do not provide a particular
definition for History as this is implementation dependent. We assume only that the
scheduler returns any element from its first argument. To make the notation more
succint we write %45 to denote %(ts). The components of the current thread are
denoted as ;s = (tidss, tstatusys, estys, tfsys). As tfs;s is also a composite value, we
introduce further notation

tfsys = (enmys, mnmyg, lvyg, ostckys, pegg) -tfs%i” (2.2)

where cnmy, is the class name and mnmys is the method name of the currently
executed method, lvy, is the local variables table for the current method, ostckys is
the current operand stack, pc,, is the label of the currently executed instruction.
The value tfs?! denotes the (possibly empty) sequence of remaining method frames
on the frame stack.

6 In the Bicolano [13] JVM semantics the space on the heap is allocated but the constructor is not called.

14

CHRZASZCZ, CZARNIK, SCHUBERT

2.1 Modification and lookup notation

We frequently modify slightly a given thread state to obtain a new one. The mod-
ification is described using the notation changed_item[replaced_part «— new_part].
These can be defined precisely as the construction of a new value where all compo-
nents but replaced _part are unchanged and the latter is replaced by new_part. For
example tfs[lv < 1v'] is a thread state tfs modified so that its local variable table
v in the topmost method frame is replaced with a new table 1v’.

The lookup of a particular instruction is done using the notation P@Qpc.mnm.cnm
where P € Prog, pc € PC, mnm € Mnames, and cnm € Cnames. This operation
extracts from the program P the class declaration cnm and then it uses the Java
method lookup scheme to retrieve the method of the name mnm (we assume the
method name is such that it takes into account the signature of the method and
therefore uniquely determines the method in the class). Then pc indicates which
bytecode instruction from the code of the method should be retrieved.

Similarly, P@Qetable.mnm.cnm denotes the exception table for the method of the
name mnm in the class cnm in P.

For h € Heap, s € Loc, and i € Threadld we write h(s,) to denote the value at
the location s visible in the heap A from the thread ¢. In most cases ¢ is clear from
the context so we omit it and write h(s). As h(s) is a compound value, we define

h(s)@cnm = 71 (h(s)) h(s)@monitor = ma(h(s)) h(s)@Qobj = m3(h(s))
h(s)@tid = 71 (m2(h(s))) h(s)@lcount = ma(mwa(h(s)))

In case s = null or s ¢ dom(h), the notations above have the value L.

2.2 Auziliary definitions

Throughout the following semantics description we use many minor notations. This
section collects the description of their meaning.

The names such as int are used here in two meanings, as a name for the set
of elements in the Java type of native integers and as a syntactical identifier which
is used to refer to the set. The 64-bit values divide into two halves. The notation
long(mi, ma) (resp. double(mi,msa)) means the 64-bit value of type long (resp.
double) constructed from two 32-bit words m1 and mso. The type of a half with no
distinction to which half and for which type (long or double) for a 64-bit value is
denoted as half.

The Java Virtual Machine handles the 64-bit types in a special way. There-
fore, the Java computational kinds are divided according to [12, Section 3.11.1] in
two categories: Catl = {int,float,ref, returnAddr} for 32-bit types and Cat2 =
{long,double} for 64-bit types. We will also use the notation Catl® to denote
Catl \ {returnAddr}.

As soon as a current thread is chosen we can conclusively determine the currently
executed method. This method is denoted cmthd € MDesc. We also use a function
next : MDesc x PC — PC to obtain the label of the next instruction in the method
using the order of the instruction occurrence there.

15

CHRZASZCZ, CZARNIK, SCHUBERT

2.3 Additional remarks

The semantics we give below is in fact more in the flavour of the interleaving seman-
tics than the actual Java Memory Model one. However, we provide here a way to
handle the Java Memory Model as our heap is defined so that it can give a different
view of the memory to each thread. Other features of the semantics such as class
loading, class initialisation, finalisation, native and synchronized methods etc. are
not handled as well. However, slight changes of the definitions above can give the
rules below the meaning which can take them into account. Adding reflection would
be more problematic as it would require us to change the form of semantic steps.

3 Semantics of instructions

The semantic rules present the evolution of runtime structures caused by the ex-
ecution of instructions. Most of the rules are directly governed by the current
instruction of the current method, but those dealing with exceptions are not.

In the course of the semantic transition the scheduler % chooses a particular
thread in ts to be executed. The notations we introduced in Section 2.1 all rely on
the assumption that a thread is fixed. Therefore, we fix a single choice made by
throughout each particular rule. However, the choice may change for different steps
of our semantics. We also assume that the state of the heap can change after each
rule so that the visibility of its content gets partially synchronised among threads.
If we do full synchronisation with every step we obtain the interleaving semantics.

3.1 Instruction load

This instruction generalizes all JVM instructions that read local variables and push
the value to the operand stack. Its parameters describe the type and source of the
value to be written to the stack, the general form of the instruction is load(k,n)
where k € Catl® U Cat2 is a kind, and n is a local variable index.

In the simplest case, when k is a 32-bit kind, & € Catl®, the instruction reads a
value from the local variable pointed by the index n and puts the value on the top
of the operand stack. It is required that the value is of kind k.

Ivis(n) = (k,m) ostck’ = (k,m) - ostckys pc’ = next(cmthd, pe,y)

P@pc,,. mnmys.cnmyg = load(k,n) k € Catl® est;s = null

ncatl-load

(3.1)
If k denotes a category-2 kind (long or double), the value to push on the stack is
obtained from the values of two variables, indexed by n and n + 1. This is because
category-2 values occupy two subsequent cells in the local variables array. We
provide an artificial kind half for the second variable in such a pair of variables.
Following the JVM description [12, Section 3.6.2] we use a single operand stack
element for a category-2 value.

P+ h,ts — h,ts[ostck « ostck’][pc < pc/]

16

CHRZASZCZ, CZARNIK, SCHUBERT

lvis(n) = (k,m1) lvis(n+1) = (half,ma)
ostck’ = (k, k(my,ms)) - ostckys pc’ = next(cmthd, pc,,)

P@pc,,.mnmys.cnmyg = load(k,n) k € Cat2 estys = null

P h,ts — h,ts[ostck « ostck’][pc « pc/] neatz-load (3.2)

3.2 Instruction store

This instruction generalizes all JVM instructions that pop a value from the operand
stack and put it in the local variable table. Its arguments are the kind and desti-
nation of the popped value, the general form of the instruction is store(k,n) where
k € Catl® U Cat2 is a kind and n is a local variable index.

In case of a category-1 kind, the store instruction pops the topmost value from
the operand stack and stores it in a local variable indexed by n.

IV = lvig[n «— (k,m)]
ostcks = (k,m) - ostck’ pc’ = next(cmthd, pc,,)

P@pc,,.mnmy,.cnmyg = store(k,n) k € Catl® est;s = null

P+ h,ts — h,ts[ostck « ostck’][pc « pc/][lv « V'] neatl-store (3.3)

If k € Cat2, two subsequent variables, n and n + 1, are modified. It is required that
the first variable is of kind &, and the second one is of kind half.

IV = lvig[n < (k,m1)][n + 1 « (half,my)]
ostck’ = (k, k(m1,mz)) - ostckys pc’ = next(cmthd, pe;,)

P@pc,,. mnmys.cnmys = store(k,n) k€ Cat2 estys = null

P h,ts — h,ts[ostck « ostck’][pc « pc] neatz-store (3.4)

3.8 Instruction stackop

Instruction stackop(op) generalizes all JVM instructions that use only the operand
stack. It should be noted, that all such instructions operate on a fixed number of
top elements, while the bottom part of the stack is neither read nor modified.

The parameter op denotes the stack operation to perform. The meaning of op is
obtained through kindsgackop(0p), which is a set of triples, each of them consisting
of: a list of input kinds [, a function f, and a list of output kinds ’.

The list [defines the requirements of the operation with respect to the operand
stack. The number of stack elements must not be less than the length of [, and for
all 7, the i-th element of the stack must be of kind /;. This is denoted by check(s,).

The function f : OpStack — OpStack is the actual stack operation. || elements
are popped from the stack and become the input of f, then the result of f is pushed

17

CHRZASZCZ, CZARNIK, SCHUBERT
on the stack; I’ describes guaranteed kinds of the result of f. In a sense f :1 — I’

(1, f,1) € kindsgacrop (0p) ostckys = s - 1
check(s,1) ostck’ = f(s)-r pc’ = next(cmthd, pc,y)

PQ@pc,,.mnmys.cnmys = stackop(op) estys = null

n-stacko
P h,ts — h,ts[ostck « ostck’][pc « pc/] b (3.5)

For example, the JVM instruction iadd is mapped to stackop(iadd), and

kindsstackop(iadd) = {([int7 int], fiadda [int])}

where fi;qq performs addition of two 32-bit integers.
Polymorphic instructions, such as swap or dup, have more than one item in
kindstqckop, for instance kindsgiqerop (dup2) is equal to

{([k1, k2], faup2s [F1, k2, k1, ko)) Y iy koecatt U {([K], faup, (ks K]) trecat2

3.4 Instruction cond

This instruction generalizes all JVM instructions that may affect the program con-
trol flow inside the current method, but do not modify the method frame stack, that
is all unconditional and conditional jumps including tableswitch, lookupswitch,
jsr and ret. The instruction reads and modifies the operand stack and the program
counter (PC). The general form of the instruction is cond(op, d) where op identifies
the actual operation on runtime structures and d € D ond; Deona = [N —fin, PC] rep-
resents the static arguments of the instruction, which consist of an indexed table of
addresses. The form and role of kinds o4 (op) is analogous to the role of kindsqckop-
The difference here is the type of f : D ynq X OpStack x PC — OpStack x PC.

Arguments of f are the table of offsets, the relevant part of the operand stack,
and the next PC. The function f returns the new value of the relevant part of the
operand stack and the new value of PC. Only one JVM jump instruction, jsr, does
put some value onto the operand stack: the current PC; ret is the only instruction
that pops the new value of PC from the operand stack.

(1, f,1') = kinds conq(0p) ostckiys = s -7

check(s,l) (s',pc’) = f(d, s, next(cmthd, pc,,)) ostck’ =" -r

P@pc,,.mnmy,.cnmys = cond(op, d) estis = null

P h,ts — h,ts[ostck < ostck’|[pc « pc] n-cond (3.6)

For example, the JVM instruction ifeq(o), performing a jump if the value on
the top of the stack is the integer 0, is mapped to cond(ifeq, [0 — pc + o]), and
kindsconq(ifeq) = ([int], fiteq, []) With fiteq (g, s, pc) returning ([], g(0)) if s = [(int, 0)]
and ([],pc) otherwise. For lookupswitch, g is a function that maps key values to
the corresponding addresses.

18

CHRZASZCZ, CZARNIK, SCHUBERT

3.5 Instruction tinc

The opcode iinc is the only JVM instruction that uses solely the local variables
array. The corresponding instruction in our formalisation is #inc(n, c), where n is a
local variable index and c¢ is an integer value.

If the local variable n is of kind int, its value is increased by ¢, according to the
Java int arithmetic.

lvis(n) = (int,m) IV = lvyn < (int,m +int €)]

pc’ = next(cmthd, pc,,) PQpc,,. mnmyg.cnmys = iinc(n,c) estys = null

n-1nc

(3.7)

PF h,ts — h,ts[lv « I¥'][pc « pc/]

3.6 Instruction get

This instruction reads the heap and modifies the operand stack. The general form
of the instruction is get(op, d), where op is the operator and d contains an optional
static argument—a qualified field name.

As for the previous rules, kindsge;(op,d) provides expected kinds of arguments
on the stack, list of kinds of values to be put on the stack, and the function f of
type Dger x OpStack x Heap — OpStackwLoc®. The function f attempts to read the
indicated object field or array cell from the heap. If it exists, f returns the modified
part of the stack, which is the value from the heap.

(lv s l/) = kindsget(op, d) ostckigs = s -1 check(s, l)
s’ = f(d7 S, h) s e OpStaCk OStCk/ =5 .r

pc’ = next(cmthd, pc,;) P@pc,,.mnmy,.cnmys = get(op,d) estys = null

; n-get
P h,ts — h,ts[ostck < ostck’][pc < pc/]

(3.8)
If it is impossible to obtain the requested value and an exception must be thrown
(e.g. NullPointerException), f returns the location e of the exception in the heap
and the resulting evaluation state is the exceptional state.

(1, f,I') = kindsget(op,d) ostckys = s -7 check(s, 1)

e= f(d,s,h) e€Lloc® PQpc,,.mnmy.cnmys = get(op,d) estys = null

exn-get
P h,ts — h,tslest — €]

(3.9)

3.7 Instruction put

This instruction reads and modifies the operand stack and the heap without creating
new locations. The general form of the instruction is put(op,d), where op is the
operator and d contains an optional static argument—a qualified field name.

19

CHRZASZCZ, CZARNIK, SCHUBERT

The role of kindsy,;(op,d) is similar to previous kinds with the function f of
type Dpy x OpStack x Heap — Heap W Loc®. The function f attempts to modify
the indicated field or array cell in the heap. If the indicated item exists and may
be changed, f returns the modified heap.

Note that the value written by put does not have to be accessible by other threads
immediately. In fact, any part of heap may be synchronized with the thread cache at
any point of program execution, with Java Memory Model constraints preserved. In
particular, the two halfs of a category-2 value may be synchronized independently.

(1, f,") € kinds(op,d) ostckys = s-r check(s,l) ostck’ =r
B = f(d,s,h) h' € Heap pc’ = next(cmthd,pc,,)

PQpc,,.mnmys.cnmys = put(op, d) estys = null

7 7 ; n-put
Pt h,ts — I, ts[ostck « ostck’|[pc < pc'] (3.10)

If the requested object does not exist, an exception is thrown.
(1, f,") € kinds(op,d) ostckys = s-r check(s,l) ostck’ =r

e= f(d,s,h) e € Loc®

P@pc,,. mnmy,.cnmyg = put(op,d) esty, = null

exn-put

Pt h,ts — h,tslest < €] (3.11)

3.8 Instruction new

This instruction modifies the operand stack and the heap by creating a new location.
The general form of the instruction is new(op, d), where op is the operator and d is
a list of its arguments (integers and class names).

The precise meaning of the instruction is given by the function f, obtained from
kindsye (0p, d), together with expected kinds of arguments on the stack and the
expected kinds of values to be stored on the operand stack, which is actually always
one value of kind ref. The function f itself manipulates the heap, allocating the
requested structure and returning the location of the allocated structure and the
new heap in case of success, and the exception otherwise.

Note that this instruction and its rules are very similar to put. We preferred
to keep the two separated as new adds new locations to the heap while put only
modifies existing ones.

(1, f,1") = kindsyey (0op,d) ostckys = s-r check(s,l) ostck’ =" -r
(s',n') = f(d,s,h) s € OpStack h' € Heap

pc’ = next(cmthd, pc,;) PQpc,,. mnmyg.cnmys = new(op,d) estys = null
n-new

P h,ts — I ts[ostck < ostck][pc < pc’]
(3.12)

20

CHRZASZCZ, CZARNIK, SCHUBERT

(1, f,1") = kindsyey (0p, d)
ostcky;s = s-r check(s,l) e= f(d,s,h) e € Loc®

P@pc,,. mnmys.cnmys = new(op, d) est;s = null

ern-new

P h,ts — h,ts[est — €] (3.13)

3.9 Instruction monitor

This instruction can modify the state of threads by trying to acquire or release a
monitor. The operation itself is done by modifying an object on the heap. The
monitor instruction expects one location on the operand stack: the object with
which the monitor in question is associated. The general form of the instruction is
monitor(op), where op is either enter or eit.

Both variants of the instruction are handled by the same two rules — one for
correct operation, one for raising an exception. The rules are governed by a partial
function f : Threadld x Loc x Threadld x N — Threadld x N U Loc obtained from
kinds,onitor (0p). If op = enter, f(tid’, s, tid, ¢) is defined only if s = null or tid =
none or tid = tid’. In the first case f returns a NullPointerException, in the
second (tid’, 1), and in the third (tid’,c+ 1). Since f is not defined when s # null
and tid’ # tid # none, i.e. the monitor is owned by a different thread, the rule
cannot be fired until the monitor is released.

If op = exit, f returns the exception IllegalMonitorStateException if tid #
tid" and otherwise either NullPointerException or (none,0) or (tid,c—1) depend-
ing on the values of s and c.

For the lack of space we did not formalize other synchronization operations
related to synchronized methods. Note however, that it is quite easy to syntactically
transform a synchronized method into one having monitor(enter) at the beginning
and monitor(exit) at every exit point.

f = kindsonitor (0p) ostckis =s-r s € Loc
(tid’, lcount”) = f(tidys, s, h(s)@Qtid, h(s)@lcount)
tid’ € Threadld Icount’ € N pc’ = next(cmthd, pc,;) ostck’ =r
h' = h[s « h(s)[tid < tid'][lcount + lcount’]]

P@pc,,.mnmys.cnmys = monitor(op) estys = null

- t
P h,ts — I ts[pc < pc]ostck « ostck’] n-monitor

(3.14)
21

CHRZASZCZ, CZARNIK, SCHUBERT

f = kindsonitor (0p) ostckys = s-r s € Loc
e = f(tids, s, h(s)@Qtid, h(s)@lcount) e € Loc

P@pc,,.mnmy,.cnmys = monitor(op) estys = null

Pt h,ts — h,ts[est — €] exn-monitor (3.15)

3.10 Instruction invoke

This instruction modifies the operand stack, the method frame stack and reads
the heap. The general format of the instruction is invoke(mode, cnm, mnm), where
mode is one of interface, special, static or virtual, and cnm and mnm are
class and method name of the method that is supposed to be called.

The principal action of this instruction is to find the method code, prepare
the new method frame and pass the execution to the new method instance. To
do that the types [of expected values on the stack together with the expected
types return by the method !’ are read from kinds;,yore(mode, cnm, mnm), which
in turn reads them from the method signature. The list I’ is of length at most 1.
Next, the dispatch function is executed which checks that the method’s flags are not
contradictory to the invoke mode, that the access rights are preserved (for private
and protected methods) and selects the type of dispatch by returning either the
class cnm for static dispatch or the class of the first location of s in h for dynamic
dispatch. The dispatch function can also return an exception.

The rest of the n-invoke rule is devoted to the preparation of the new method
frame: the function initlv places the arguments from the stack in the local variable
table of the new frame after splitting values of type long and double and performing
necessary floating-point value set conversions [12, Section 3.8.3]. Finally, the new
method frame is put on the method frame stack with the empty initial operand
stack and pc = 0.

Synchronized methods are not handled here, but please see the remark at the
end of Section 3.9.

(1,1") = kindsof ;o (Mode, cnm, mnm) ostckys = s - check(s,)
cenm’ = dispatch(mode, cnm, mnm, s, h) tfs’ = tfs;s[ostck « 7]
Iv' = initlv (lvlength(P@mnm.cnm), s)
tfs” = (cnm’, mnm, v/, [, 0) - tfs’

P@pc,,.mnmys.cnmys = invoke(mode, cnm, mnm) estys = null

n-invoke

(3.16)

Pt h,ts — h,ts[tfs «— tfs"]

22

CHRZASZCZ, CZARNIK, SCHUBERT

(1,1") = kindsof ;,pore (Mode, cnm, mnm) ostckss = s - check(s, 1)

e = dispatch(mode,cnm, mnm, s, h) e € Loc

P@pc,,.mnmys.cnmyg = invoke(mode, cnm, mnm) estys = null

exn-invoke

(3.17)

PFE h,ts — h,ts[est — €]

3.11 Instruction return

This instruction returns from the current method. It reads the operand stack and
modifies the method frame stack by removing the current frame and updating the
previous frame: moving the pc to the next instructions (usually over an invoke
instruction) and updating the operand stack by pushing the return value, after
the floating-point value set conversion [12, Section 3.8.3]. The general form of the
instruction is return(l) where [is a list of kinds of length at most 1.

Even though [12] does not specify this explicitly, we decided to add the rule
n-term-return, to deal with the termination of the method corresponding to the
last frame on the frame stack.

These rules do not handle releasing of monitor when exiting a synchronized
method. This can be simulated, however, by putting a monitor (exit) instruction
before every return statement. Please see also the discussion in Section 3.9.

ostckys = s- 1 check(s, 1)
tfsis = f1 - (enm/, mnm’, v/, ostck’, pc’) - tfs2 f; € MethodFrame
tfs’ = (cnm’, mnm’, Iv’, vsc(s) - ostck’, next(PQmnm’.cnm’, pc’)) - tfst!

PQ@pc,,.mnmys.cnmys = return(l) estys = null

n-return

(3.18)

P+ hyts — h,tstfs < tfs']

ostckys = s -1 check(s,l) tfs;s = [f] f € MethodFrame

tfs’ = || tstatus’ = TERMINATED

P@pc,,. mnmys.cnmyg = return(l) estys = null

-t -ret
P h,ts — h,ts[tfs « tfs/][tstatus « tstatus'] rrrermererin (3.19)

3.12 Instruction throw

This instruction takes no parameters, it reads and removes the location of the
exception form the stack and changes the evaluation state of the current thread
(the rule ex-throw). The way the exceptions are handled in our semantics is the

23

CHRZASZCZ, CZARNIK, SCHUBERT

following. The evaluation state (est) component of each thread says if the execution
is in the normal state, when est = null, or in exception handling state otherwise.

Note that the switch to the latter state can be done not only by executing the
throw instruction but also by throwing an exception (e.g. NullPointerException)
by other semantic rules. If est = e is a location of a valid exception, the remaining
rules ezx-in-handle, ex-out-handle or ex-term-handle can be fired, depending on the
fact whether the exception is handled inside the current method or provokes its
abrupt termination. In the latter case, the ex-term-handle rule handles the special
case where the current method is the last on the method frame stack. This rule
does not have a direct correspondence in [12], just like the rule n-term-return.

The feature which is not handled is the release of monitor when a synchronized
method is abruptly terminated by an exception. Note however that this can be sim-
ulated by adding a catch-all exception handler which would execute the instruction
monitor (exit) and then rethrow the exception. See also the discussion at the end
of Section 3.9.

ostckis =e-r e € Loc®

PQ@pc,,. mnmy,.cnmyg = throw estys = null

ex-throw

Pt h,ts — h,ts[est «— €] (3.20)

ostck’ = [e] (pcy,, h(e)@cnm) € dom(PQ@etable.mnm;y,.cnmy,
ts

pc’ = PQetable.mnmyg.cnmys(pe,,, h(e)@enm) estys = e € Loc®

ex-in-handle

(3.21)

P+ h,ts — h,ts[ostck < ostck][pc « pc’][est + null]

(PCtss h(€)@cnm) ¢ dom(P@etable.mnmy,.cnmys)

tfsis = f1 - fo - thsf3 f1, fo € MethodFrame esty, = e € Loc®

il ex-out-handle
P h,ts — h,ts[tfs « fo - tfs;3"]

(3.22)
(pcss, h(e)@cnm) ¢ dom(P@etable.mnmy.cnmy;)
tfsis = [f] f € MethodFrame estys = e € Loc®
PE b ts — h, ts[tfs — []|[tstatus — TERMINATED] ¢-term-handle g 5q)

3.18 Instructions without semantics

The functionality of a few instructions cannot be expressed by semantical transfor-
mation of the runtime structures as their meaning is not described in JVM speci-
fication [12]. These are breakpoint, impdepl, impdep2, and the instruction with
the opcode 186." Therefore, they are omitted from the paper. The opcode wide is
taken into account along with the non-wide operations.

7 JVM semantics says: ‘For historical reasons, opcode value 186 is not used.’

24

CHRZASZCZ, CZARNIK, SCHUBERT

4 Conclusions

We have presented a concise formalisation of JVML which turns out to be factoris-
able into 12 instruction mnemonics. This was possible because we separated generic
operation of many instructions and tabularised particular behaviours of individual
opcodes. In this way we rigorously reduced the overall complexity of the whole
language without significantly sacrificing its features.

References

[1] Atkey, R., CoqJVM: An ezxecutable specification of the Java Virtual Machine using dependent types,
in: M. Miculan, I. Scagnetto and F. Honsell, editors, Types for Proofs and Programs, International
Conference, TYPES 2007, Cividale des Friuli, Italy, May 2-5, 2007, Revised Selected Papers, Lecture
Notes in Computer Science 4941 (2008), pp. 18-32.

[2] Chrzaszcz, J., Modules in Coq are and will be correct, in: S. Berardi, M. Coppo and F. Damiani, editors,
Types for Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 - May
4, 2003, Revised Selected Papers, Lecture Notes in Computer Science 3085, 2004, pp. 130-146.

[3] Chrzaszcz, J., P. Czarnik and A. Schubert, A dozen instructions make Java bytecode, available for
download at http://www.mimuw.edu.pl/~chrzaszcz/papers/.

[4] Consortium, M., Deliverable 3.1: Bytecode specification language and program logic (2006), available
online from http://mobius.inria.fr.

[5] Dean, D., E. Felten and D. Wallach, Java security: From HotJava to Netscape and beyond, Security
and Privacy, IEEE Symposium on (1996), pp. 190-200.

[6] Demange, D., T. Jensen and D. Pichardie, A provably correct stackless intermediate representation for
Java bytecode, Technical Report Research Report 7021, INRIA (2009).

[7] Freund, S. N., “Type systems for object-oriented intermediate languages,” Ph.D. thesis, Stanford
University (2000).

[8] Freund, S. N. and J. C. Mitchell, The type system for object initialization in the Java bytecode language,
ACM Transaction on Programming Languages and Systems 21 (1999), pp. 1196-1250.

[9] Gosling, J., B. Joy, G. Steele and G. Bracha, “The Java Language Specification, third edition,” The
Java Series, Addison Wesley, 2005.

[10] Kahrs, S., D. Sannella and A. Tarlecki, The definition of Extended ML: A gentle introduction,
Theoretical Computer Science 173 (1997), pp. 445—484.

[11] Klein, G. and T. Nipkow, A machine-checked model for a Java-like language, virtual machine, and
compiler, ACM Transactions on Programming Languages and Systems 28 (2006), pp. 619-695.

[12] Lindholm, T. and F. Yellin, “The Java (TM) Virtual Machine Specification (Second Edition),” Prentice
Hall, 1999.

[13] Pichardie, D., Bicolano — Byte Code Language in Cogq (2006), http://mobius.inria.fr/bicolano.
Summary appears in [4].

[14] Pusch, C., Proving the soundness of a Java bytecode verifier specification in Isabelle/HOL, in:
R. Cleaveland, editor, Tools and Algorithms for Construction and Analysis of Systems, 5th
International Conference, TACAS ’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceedings,
Lecture Notes in Computer Science 1579 (1999), pp. 89-103.

[15] Qian, Z., A formal specification of Java Virtual Machine instructions for objects, methods and
subrountines, in: Formal Syntaz and Semantics of Java (1999), pp. 271-312.

[16] Stark, R. F., J. Schmid and E. Borger, “Java and the Java Virtual Machine: Definition, Verification,
Validation,” Springer, 2001.

[17] Vallée-Rai, R., P. Co, E. Gagnon, L. Hendren, P. Lam and V. Sundaresan, Soot - a Java bytecode

optimization framework, in: CASCON ’99: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research (1999), p. 13.

25

http://www.mimuw.edu.pl/~chrzaszcz/papers/
http://mobius.inria.fr
http://mobius.inria.fr/bicolano

ByteCode 2010

Reconstruction of Type Information from
Java Bytecode for Component Compatibility °

Jaroslav Bauml, Premek Brada

{jbauml|brada} Ckiv. zcu. cz
Department of Computer Science and Engineering
University of West Bohemia
Univerzitni 8, 30614, Pilsen, Czech Republic

Abstract

The Java type system is strictly checked by both the compiler and the runtime bytecode interpreter of the
JVM. These mechanisms together guarantee appropriate usage of class instances. Using modern component
systems can however circumvent these static checks, because incompatible versions of classes can be bound
together during component installation or update. Such problematic bindings result in ClassCastException
or NoSuchMethodException runtime errors. In this paper we describe a representation of Java language
types suitable for checking component compatibility. The presented approach applies various bytecode
handling techniques to reconstruct a representation of the Java types contained in a component implemen-
tation, using different sources of class data. The representation is then used during build- and run-time
type system verifications with the aim to prevent these kinds of errors. We have successfully applied this
approach to prevent OSGi component incompatibilities.

Keywords: type reconstruction, reflection, bytecode analysis, subtyping, component compatibility

1 Introduction

Statically typed languages have clear advantages for which they are used in the
majority of software systems. As Erik Allen describes clearly in [4], static type
checking improves robustness through early error detection, increases performance
by making the required checks at the best time and supplements the weaknesses of
unit testing. Early checks of type coherence done by compiler ensure type safety of
the program code and guarantee that types used at runtime are compatible.

This clear situation is however complicated by component systems. One of the
most important contributions of Component-Based Software Engineering (CBSE)
[20,5] is the decomposition of applications into smaller parts — components. An
application is not built and deployed as one monolithic block but composed from
components which encapsulate parts of its functionality, possibly developed by inde-
pendent vendors. Each component has its own interface which is split into two sides

L This work was supported by the Grant Agency of the Czech Republic under grant 201/08/0266.

BAauML, BRADA

— the sets of provided and required features. Through these features, components
are wired together according to their declared dependencies. Today more and more
Java based systems move to this kind of modularized or component-based archi-
tecture, supported by systems like OSGi, Netbeans plugins or Android application
architecture.

At component deployment time, a problem stemming from type mismatches can
occur in case the structure of a type exported by a providing component changes
during its evolution. The client components will still be wired to such provider
(since the type names in the provided-required feature pairs match) but the provided
language type can now be incompatible with the notion of this (referenced) type on
the client side.

As we show in [8] and [6], this scenario is realistic in case of independent com-
ponent evolution. We have therefore proposed a method for deciding on compo-
nent compatibility based on the subtyping comparison of the real structure of the
referenced type and the described client’s notion of that type. Such run-time com-
patibility checks depend on the complete reconstruction of type description from
component binary implementation — during and after deployment, its source code
is rarely accessible.

In this paper, we discuss in detail the alternative ways that exist for the re-
construction of Java types by bytecode analysis and run-time introspection. The
following Section 2 focuses deeply on the motivating problem with real life exam-
ples. The features which are utilized in component dependencies actually depend
on the component model used. Since we work mainly with the OSGi component
model, we will provide short description of OSGi in subsection 2.3.

The proposed method of Java type reconstruction is described in the next two
sections. Section 3 describes a Java type system representation employed by our
method. The generality of its design allows the representation to be used in other
projects to ensure Java language type compatibility. Section 4 describes the ap-
proach to deciding on component compatibility which uses algorithms working on
the type system representation. The merits of these methods are discussed in the
end of the work.

2 Compatibility in Component Software

In the industry and research worlds there are various component models which
differ from each other by complexity, level of abstractness, technical maturity and
the purpose of use. But in each of these different component models one implicit
requirement is shared — it is component compatibility.

2.1 Component Dependencies

Component compatibility is a crucial requirement because of component life cycle.
As shown in Figure 1la, when working with standard monolithic software the depen-
dencies between its parts (let say classes) are created at build time when they are
also checked by the compiler to be type compatible. In case of problems found by
the compiler, the resulting code is not created; when language types (classes and

27

BAauML, BRADA

interfaces) are compatible, the application can be built and deployed to a produc-
tion site. When a new version of software is developed, the whole monolithic code
package is again moved to the production site for application upgrade.

Product Product
V 1'0 @
@ v1.0
vil @ ; gb h%
e
etc. Lo
. v1.1l
Production Production
Development site Development etc. s
(a) Monolithic software (b) Component software

Fig. 1. Software process

When using component software development techniques the situation is similar
in general but differs in important details. Each component has its own interface
which is composed of two sides — the provided and required one. The provided
side consists of features (services, packages, events, ...) which are published by
the component so as to be available to component surroundings. Conversely, the
required side declares features which the surrounding must suply to the component
for its proper function. Through these features, components are wired together,
forming dependencies in a way described by the particular component model.

2.2 Type Compatibility in Component Applications

As can be seen in Figure 1b the dependencies between components are also at first
checked by compiler at component build time. Unlike the monolithic application sce-
nario however, each component (including those developed by third-party vendors)
can then be deployed to the production site separately — without its depended-on
suppliers, or to be precise, only with a declaration of these dependencies.

During subsequent update of the component-based application, the wirings
among components are re-established at the production site with the component
in the new version. When the new version is incompatible, the application will fail
with some kind of runtime exception. The probability of the failure is equal to the
probability of invoking the type (e.g. class) which exhibits the incompatibility.

In many currently used component models, there is no mechanism to describe
the type system of component interface. The types from the provided part of a
supplier component are used in a client’s source code, creating an implicit “notion”
of these types in client’s implementation. This binding of the client’s code to the
supplier’s types is logical but creates an invisible static dependency in the client
implementation — its notion of the referenced types is based on the structure of the
particular supplier’s types used during compilation. At compile time, the actual
types exported by the supplier and this notion are checked for coherence. However,
an analogous mechanism is missing during the component (re)wiring operation in
the deployment phase.

28

BAauML, BRADA

This general problem is shared by many Java based component systems. From
now on we will present it on a case study of the OSGi platform which is very simple
and lightweight and its popularity is growing. For insight to the problems handled
further, an elementary knowledge of OSGi is required; if you are familiar with the
framework you can skip the next subsection.

2.8 A Brief Overview of OSGi

The Open Services Gateway Initiative (OSGi) platform [18] is an open Java-based
framework for service deployment and management. Its uses range from embedded
applications to large-scale desktop and enterprise systems. The core of OSGi is
the framework which creates a runtime environment for managing the deployment
and lifecycle of components called bundles. A set of standardized basic services,
implemented by system bundles, is provided as part of the framework distribution.

A bundle can export (provide) or import (require) Java packages and services,
declare native libraries used, and specify dependencies on the execution platform
and concrete bundles. The standard Java manifest file holds the specification meta-
data. Packages are used to access shared types and bundle implementation, and
form static bindings between bundles. Services are represented by Java interfaces
and allow dynamic registration, lookup and (un)binding of functionality using a
centralised framework registry.

The onus of service binding is by default on the bundle implementation which
brings flexibility in handling runtime changes. If a standardized declarative services
module is used, service declaration and binding can be delegated to the framework.
On the other hand, dependency resolution for packages is always handled by the
framework core, requiring no work on the programmer’s side.

2.4 Real Word Problem Example

In this section we describe a concrete example of the problem with component
compatibility, showing how the user can be affected by this issue. It is one instance
of a set of runtime failures which take hours to track down. Methods which prevent
such runtime exceptions can therefore save valuable amounts of development time.

&« C A | 9% hitp://localhost: 8080/system/console/dpsubstverif
HTTP ERROR 500

Problem accessing /system/console/dpsubstverif. Reason:

[Lorg.apache.commons.fileupload.FileItem; cannot be cast to [Lo
Caused by:

java.lang.ClassCastException: [Lorg.apache.commons.fileupload.Filel
at cz.zcu.kiv.osgi.dpsubstverifier.DPSubstVerifyPlugin.getF

Fig. 2. Real world compatibility problem

To develop a frontend for a research project we decided to extend the
Apache Felix Webconsole [1] bundle. This Webconsole is an extendable web-

29

BAauML, BRADA

page for managing a running OSGi framework. It embeds a servlet con-
tainer which can be extended by registering a service implementing an interface
org.apache.felix.webconsole.AbstractWebConsolePlugin.

Our plugin bundle, called subst-verifier, is very simple. It can verify if a new
version of a bundle is compatible with an old version. It has only one HTML form
with file input. When the file is uploaded to the plugin, the verification is performed.

When we installed subst-verifier and tried to upload a file we got the error
message shown in Figure 2. After several hours of problem searching we found
the following issue to be its cause: We have used the org.apache.feliz.webconsole
bundle in version 1.2.10 which expects library commons-fileupload in version 1.1.
This dependency is not handled by metadata description of the component and
therefore it was not easy to observe it. Our subs-verifier was however compiled to
commons-fileupload in version 1.2. Because these two versions of a widely used
library are not compatible and no compatibility checks are made in OSGi component
model, we got a serious runtime crash of our application.

3 Component Type-Level Representation

In order to compare two components and determine the level of their compatibil-
ity at runtime (when source files are not accessible), we need a suitable model to
represent both components. The representation we describe in this section was de-
signed to capture all syntactic changes of types on the public API of a component.
It consists of two layers (see Figure 3). For the layer of the whole component we
use a simple metamodel of OSGi called BundleTypes. It represents the exported
and imported features of a bundle. The second layer describes only the Java types
declared and used by the component — it is therefore called JavaTypes. Since all
OSGi bundle features are implemented as or consist of Java classes, the leaf nodes
of the BundleType layer use the Java type representation described by JavaTypes.

Bundle
layer ‘exp. packagesHimp. packagesH exp. services H imp. services ‘
I]
| — |
Java : = = s
layer ‘ JFle‘lds ‘ l JMeEhods ‘ l JContr‘uctors ‘
v v
‘ JField ‘ ‘ JMethod | | JContructor |
L 1T

Fig. 3. Component Representation

The JavaTypes layer can be used independently of the Bundle representation.
We have designed this layer according to the Java Language Specification, Third
Edition [14]. The JavaTypes layer is very similar to the Java reflection APT [13]
but is more general because the contents can be obtained from other sources than
just reflection. For reasons described below, the unique feature of JavaTypes is
the ability to create the type representation also from component bytecode or the
possibility to create representation of nonexisting classes by manipulation.

30

BAauML, BRADA

There are some quite subtle differences between the Java language type system
and the type system which JVM uses when interpreting bytecode. Since our method
is focused on reconstructing Java representation and reasoning over Java programing
elements, for the rest of the paper we will use the Java type system.

The base interfaces of JavaTypes are shown in Figure 4. JType is the parent
interface of specific types in Java. These specific types are: JClass, JType Variable,
JParametrized Type, JWildCard Type and JGenericArray Type. JClass represents ba-
sic types of Java language — a class or an interface. Other children of JType represent
generic types. In the rest of the paper we will call types represented by JClass as
basic types and other types as generic types.

<<interface>> O
JType
(cz.zcu.kiv.jacc javatypes)

<<interface>> O <<interface>> O <<interface>> O
JClass JParameterizedType JGenericArrayType
(cz.zcu kiv jacc javatypes) (cz.Zcu.kiv jacc.javatypes) (cz.zcu.kiv jacc javatypes)

<<interface>> O <<interface>> ®
JTypeVariable <D> JWildCardType
(cz.zcu kiv jacc.javatypes) (cz.zcu.kiv.jacc javatypes)

Fig. 4. Base interfaces of JavaTypes representation

To cover generic types, JTypeVariable represents a type variable in a class or
interface definition, JParametrizedType covers the case of an instance with type
variable in its definition, and JWildCard Type represents an instance of type with a
wildcard — eg. List<?>. Lastly, JGenericArrayType represents an array of JType-
Variable, JParametrized Type or JWildCard Type. (The situation concerning generics
is actually more complicated because there are cases when their representation is
not available, e.g. through reconstruction from bytecode which does not contain
generics annotations.)

The representation of language features available in Java is summarised in Figure
5. JClasses aggregate JMembers (JFields, JMethods or JConstructors). For all
these elements an JModifier can be obtained, expressing their access modifier —
public, private, static, etc. All elements which can have an annotation attached have
to implement the JAnnotable interface which can return an JAnnotation object.

3.1 Type Representation Sources

Creating the representation of types referenced by a component’s interface is de-
signed in a way similar to the Java class loading process. The types can be obtained
from several sources. Each source has its JTypeLoader object that is responsible for
reading the types located in the given source. The currently implemented sources
for retrieving JavaTypes representation are:

e A loaded program — through Java reflection API;
31

BAauML, BRADA

JComparable O)

[

JType O JAccessibleObject O
JClass O 1 0~ JMember O
4”96 of JField O_J T
return or parameter type JMethod O
AN
JClassLoader O Jconstructor O)
|

Fig. 5. Diagram of core JavaTypes representation layer

e Compiled but not loaded files — using bytecode inspection;

* Programmatically — custom creation, for cases like testing or stub creation.

Furthermore, each JType loader has its parent JTypeLoader. The tree organi-
zation of loaders and the fact that each loader can create the representation from
a different source brings variability into the process of obtaining the component’s
type representation. For example, when a referenced class is not found inside the
component’s bytecode we can try to find it through the parent JType loader. This
can be a reflection loader which creates the class representation in cooperation with
a classloader pointed to a classpath (where the class is available). These sources
can be arbitrarily combined together.

Retrieving representation using Java reflection is quite straightforward because
of the intentional similarity between JavaTypes and the reflection API. In fact,
JavaTypes implementation for reflection is a Decorator design pattern implemented
over the reflection APIL.

The two other options of creating JavaTypes — bytecode inspection and custom
creation — are more interesting.

When creating the representation from bytecode, we use the ASM and BCEL
bytecode analysis frameworks. ASM [2] provides a Visitor pattern approach for
accessing all parts of class data. We have implemented visitors for the particular
JavaTypes classes. BCEL [3] is used for historical reasons (introduced earlier than
ASM to the project).

The following example illustrates the creation of a class representation from
bytecode. Let us have an Example class with one method:

public class Example {
public void callMe(int i, String s) { ... }

}
The bytecode method descriptor for the method is:
(ILjava/lang/String;)V
32

BAauML, BRADA

This bytecode data are read by ASM into our JMethod Visitor implementation
in the JTypeLoader. When called, the visitor creates a JMethod instance which the
type loader adds to a JClass object, created earlier in a similar way.

Custom creation of JavaTypes can be useful in three cases. The simplest one
is testing purposes, when we need to create artificial types to perform tests on the
representation. Our second use case is programmatic creation of nonexisting types
— this will be described in detail below. Lastly we can use the custom creation prin-
ciple for stubbing purposes. Stubbing is a technique for obtaining the replacement
of a class we cannot or do not want to load. Such a class is replaced by a dummy
one called stubd.

The creation of stub JClass objects in the custom JType loader is parametrized
by a classname mask which defines the set of stubbed classes (e.g. java.lang.*
for core Java classes). In case of loading via reflection, stubs are created for all
classes available on system classpath — the assumption is that those classes are
shared by all components in the system and therefore do not influence component
substitutability. Stubs are also created in all cases when a class is not available
inside the component and we can safely assume that its source is not changed by
component update (i.e. that the old and new version of the component will reference
the same class code) — this is the case of library classes or imported packages.

3.2 Obtaining Complete Bundle Type Representation

To be able to compare bundles, we have to create the representation of those bun-
dles. This is performed in three steps. The first one is reading the bundle metadata
information, in the second and third steps we follow the pointers from this metadata
and go to bundle implementation to get the Java layer representation.

3.2.1 Component Metadata — First Step

Bundle manifest file acts as the point of first contact where the names of packages
and other features are found. Bundle layer representation is built from this infor-
mation. This step is trivial, because it means parsing a well specified text file (see
example below).

Bundle—Name: LogService

Bundle—Version: 2.3.2

Export—Package: cz.zcu.logging;version="1.3.0"
Import—Package: org.osgi.framework

The next steps are more interesting, because the JavaType representation must
be loaded from bytecode saved in the bundle jar file.

3.2.2 Ezported Side of Component — Second Step
The classes for all exported features of a component must be naturally included
in the component package itself. We can therefore construct their representation
directly from the bytecode of the corresponding types.

The type reconstruction starts at the bundle level. For each exported package
and service we create the corresponding JPackage or JService objects. Then, their

33

BAauML, BRADA

JClass contents needs to be filled in. The situation is trivial for the service case
when only one class (the service interface) is referenced. For packages, the list of all
contained classes is first obtained by querying the classloader and then expanded
by creating JClasses using the reflection type loader.

Next we have to create the representation of all types referenced by public meth-
ods or fields of these classes because they will be used in the type-based bundle
comparison. This process is bootstrapped by adding the JClasses from exported
packages and services to the known TypesList queue. Then an iterative algorithm for
creating the whole transitive closure of interface types starts. All unprocessed types
from knownTypesList are handled consecutively. For each type T from known Type-
sList, the JTypes referenced by its members are retrieved. For each type R from
these referenced types one of these possibilities is true:

* R is contained in the component and not in knownTypesList — add R to known-
TypesList.

* R is contained in the component and already in knownTypesList — no action.

* R is not inside the component and its namespace is listed in an import-package
header — a stub is created.

* R is not inside the component and its namespace is not in an import-package
header — exceptional state.

When all referenced types of type T are processed, T is marked as unfolded
and next type in the knownTypesList is processed with the same algorithm. The
exceptional state is handled by throwing the appropriate exception, to indicate that
the analysed bundle is invalid (referencing a type in code without corresponding
imported package declaration means the bundle would not be resolved and started
by the OSGi framework anyway).

knownTypesList for exported package cz.zcu.example

X Q © © ©
v\ W (5/
f)\‘ @) ‘ No structured type references
@ © \%)

Stub — class out of component Recursion in types

Fig. 6. Exported package — example

Because there is a danger of recursion in type dependencies, the algorithm must
include a recursion detection instrument. For this purpose an additional stack data
structure is used which saves the currently unfolded type branch sequence. On its
bottom there is the JClass directly referenced from an export-package component

34

BAauML, BRADA

header. The stack contains the path from the currently processed node to this
root. When a new referenced type is found, the stack is checked for containment of
this type. If found, recursion was detected and the type is not expanded but the
reference is pointed to the stacked instance.

In this way the whole tree of all JTypes is expanded. The tree is created because
each JClass can reference another JClass as its field, method parameter, or method
return type. The leaf nodes of this tree are of the following three kinds:

e Primitive types. In this trivial case there is no need to create children JClasses.

e Stub class. It means this type is contained in another bundle or library, and an
empty stub class is created in its place.

* Reference to a recursively defined type. In this case this node in not a leaf, but
the expansion of types ends.

3.2.83 Imported Side of Component — Third Step

The situation with the imported side of component is trickier. While for the features
on the exported side a concrete bytecode of their types is available within the
component package, the situation is the exact opposite for the imported side. This
is an obvious consequence of the component-based decomposition of application
functionality, as discussed in Section 2.

Our solution is to use the following approach to reconstruct the imported side.
Each language type a imported by the component C which is really needed by its
functionality is used by at least one type r inside C’s implementation. The compiler
leaves an imprint of a in the bytecode of r containing the type signatures of the
class as well as its members (fields and methods) used by r. When we create a
union of all these signatures in C’s implementation, we get the complete structure
of the a type as needed by the whole component.

C' cz.zcu.translator eXpeCted a:
E'% import-package: com.inv
cz.zcu.impl.Translator cz.zcu.trans.Dict COm.IR T
import com.inv.T; import com.inv.T;
ublic T(String s);
void trans(T) { void init() {

T.translate("", new List()\ Tt =new T("Ahoj"); === ublic <any> translate(String, List);

} }
pﬂ

Fig. 7. Imported package — example

This idea can be used to create the representation of imported packages and
services, because they are compounds of types. The principle is illustrated by
Figure 7. In this example, the component C is cz.zcu.translator which imports
the package com.inv. This package contains a referenced class com.inv.T, which
is used by two types (Translator and Dict) in component C. The structure of the
type T reconstructed from component’s implementation consists of the two methods

35

BAauML, BRADA

deduced from the code snippets shown in the figure. The symbol (any) denotes any
object type, primitive type or void; it acts as a supertype for all types (the calling
convention in the bytecode does not contain enough information to reconstruct the
precise return type of the operation’s signature).

Using this bytecode analysis technique, a similar structure as for exported pack-
ages is created. However, the root classes of the representation are created by
custom creation (stubbing) described in the previous section.

In certain scenarios it is possible to use an alternative approach to reconstruct-
ing imported types. When the bytecode of bundle’s imported packages (e.g. their
.jar files) is available during bundle analysis, we can reconstruct the represen-
tation from its “classpath”. For instance, when the bundle imports the package
cz.zcu.example we will include all classes from this package in the representa-
tion of bundle’s imported side. In section 4 below we show that the assumption of
available “classpath” is fulfilled for a large class of situations.

The first approach to obtaining imported types representation is more labori-
ous but exactly matches the component’s real requirements. As such it actually
provides more precise information than the representation created by analysing the
imported packages themselves (the second approach). This advantage is used by
the contextual compatibility evaluation [7] proposed earlier by one of the authors.

4 Component Compatibility Determination

The method of determining component compatibility we propose is based on evalu-
ating the subtype relation between two components. Briefly, if type A can be used
in all possible contexts of another type, then A is a subtype of the other one.

In this section we describe the algorithm of component type-based comparison.
Because the focus of this paper is on type representation reconstruction, only the
main principle will be illustrated through an example. We first describe a function
used to compare type structures, then show some typical use cases for this method.

4.1 Component Type Differences

The result of comparing two types a and b can be described by the character of
changes between them. Let us define the function Diff(a,b) : Type x Type —
Differences which computes the difference between types a and b. The returned
value is one of:

e None: No change between a and b.
e Spec: Specialization — b is subtype of a.
e (Gen: Generalization — a is subtype of b.

e Mut: Mutation — there is no subtype relation between a and b.

The value of Diff() function for structured types is computed by combining
the differences of their constituent parts. The exact algorithm of Diff () value de-
termination was published in [6] and is explained in Figure 8 where the package
cz.zcu.logging is in two versions.

36

BAauML, BRADA

In the second version one method (void setSize(int)) in interface Logger
was deleted and at the same time one method (void flushAllLoggers()) of an-
other interface LogService was added. Whereas the Logger was generalized the
LogService was specialized. These two changes in the same package are contravari-
ant, so that the resulting difference is a Mutation of the type.

4.2 Differences and Compatibility

When we retrieve the value of Diff (a,b) function we can use it to make a decision
about a to b compatibility. The following table (1) shows the rules:

Diff (a,b) None | Specialization | Generalization | Mutation
Type a is compatible to b | Yes No Yes No
Type b is compatible to a | Yes Yes No No
Table 1

Mapping of Difference values to Compatibility

4.8 Use Cases of The Method

The method described above is general — it “only” defines how to create representa-
tion of Java language types and how to use it in subtyping comparison to determine
the level of type and component compatibility. In this section we provide a list of
use cases in which the method is used now.

Automated Versioning

As described in detail in previous work [6], the bundle comparison method can
be used for automated versioning of components. This process can simplify the
error-prone task of assigning version identifiers to components and their features.
The type differences described above can be used as an input to an automatic
creation of version identifiers describing the real evolution of component interface.
In the case of OSGi for example, the version numbering scheme is governed by rules
which nicely map to the difference values. When using such automated versioning

cz.zcu.logging OLD | cz.zcu.logging NEW|

Interface Logger Interface Logger
void log(String msg) void log(String msg)
void setSize(int size) - method deleted
Generalization
Interface LogService Interface LogService
Logger getLoger() Logger getLoger()
void flushAllLoggers()
n 4

#

®
Mutation /

Fig. 8. Subtyping example

37

BAauML, BRADA

in a component system, its administrators can rely on the reliability of the version
identifiers.

This use case applies the method at the bundle release time, when bundle type
representations obtained by bytecode inspection of two last component revisions
are compared. The first bundle in the comparison is the last previously released
component with version identifier. The second bundle is the next release candidate
for which we want to determine the version identifier.

With this approach released bundles carry version identifiers which describe not
only the piece of software itself but also the changes it has undergone.

Safe Update

Another use case of the method is applicable at the deployment time of com-
ponents. In this case we can use the subtyping comparison to ensure that the new
version of a bundle is compatible with the previous one, regardless of the version
numbers assigned to both (taking the conservative stand that their reliability is
low and that a robust method is needed to ensure application type consistency).
Alternativelly, the method can be similarly applied to comparing a new version to
the actual context of its deployment.

In this use case the method is applied at component deployment time. The
representation of the old bundle version is obtained from reflection, including the
imported side (resolved to existing package exporters). The representation of the
new bundle version is obtained via bytecode analysis.

When using Safe Updater as an updating tool we can prevent the situation from
introductory example in Section 2.4. The Safe Updater searches the interfaces of
providers and importers recursively and verifies if types referenced by these two sides
of the contract are compatible. The subtyping rules applied recursivelly guarantee
those errors preclusion.

In this concrete use case we prevent nearly the same set of errors as would be
found during JVM linking and verification processes. Contrary to them we can do
these checks on demand without loading the bytecode to JVM.

Component Dependency Resolving with Checks

The last application scenario we mention is the process of resolving the compo-
nents with additional subtyping checks. Resolving, similar to the linking stage of a
compilation process, is used to bind imported packages to corresponding exporters.
These bindings are made only on matching names of imports and exports.

The additional checks ensure that all mutual component interfaces in a compo-
nent system are compatible with each other. Here, our method is applied at the
start time of the component framework, after component installation or update.
Both compared interface sides are loaded via reflection.

5 Related Work

In both research and industry world bytecode analysis and manipulation techniques
are common. The ASM library [11] can be used to modify existing classes or dy-

38

BAauML, BRADA

namically generate classes and it is focused on simplicity of use and performance.
Other frameworks with similar functionality are JMangler [15] or JavaAssist [10].
Classes are represented by objects which contain all the symbolic information of the
given class: methods, fields and byte code instructions, in particular. This approach
is less efficient than ASM visitor design pattern, thus ASM is the best choice for
dynamic systems.

A distinct class of frameworks uses XML for bytecode representation and ma-
nipulation [17,19]. They are comparable in features to the above approaches and
support advanced operations including crosscompilation. The latter work discusses
the need to transform or wrap API calls embedded in the bytecode.

Unlike JavaTypes, none of these approaches deals with the problems of recon-
structing the referenced types not found in the analysed bytecode, which is a key
need in the CBSE context. Another advantage of JavaTypes is the ability to com-
pare the reconstructed types by subtyping rules. On the other hand, JavaTypes is
not intended for bytecode manipulation and intentionally supports only a limited
subset of Java language features.

Concerning the evaluation of component compatibility, there are two general
methods. Dynamic assessment determines compatibility by running a regression
test suite [12]. More closely related to our approach, McCamant et al [16] define
compatibility based on observed (not declared) behaviour while Chaki et al [9] verify
that global correctness properties are preserved through component updates, apply-
ing model checking on abstractions of component’s source code. These approaches
are certainly more precise than compatibility based on type reconstruction used
in our work. On the other hand it is much more difficult to obtain the required
behavioural representations of a component. Our method could be used as a first
check prior to expensive model checking is performed.

6 Conclusion

The ability to perform type-based compatibility checks is important for enhanced
robustness of component applications. In this paper, we have described a supporting
representation of the Java language types which constitute the interface of compo-
nents together with a set of methods for obtaining this representation. Our system
allows to use a mixed set of sources in these methods, including the Reflection API
and bytecode analysis using the ASM tool.

Among the main challenges which our approach addresses are (i) the need to
cover various stages of component development lifecycle — build, deployment, as
well as runtime checks; (ii) limited access to some of the classes referenced by
component’s interface types; (iii) faithful reconstruction of types of the imported
(required) features from a standalone component package. The key contribution
presented is the method for obtaining the real structure of the imported-side types
from their parts referenced by the component’s bytecode implementation.

The methods described in this paper have been successfully used in several
applications dealing with component representation and compatibility. They form
a base for automated component versioning as well as a type-safe update mechanism
implemented for the popular OSGi framework.

39

BAauML, BRADA

References

[1] Apache feliz web console.
URL http://felix.apache.org/site/apache-felix-web-console.html

[2] Asm website.
URL http://asm.ow2.org/

[3] Bceel website.
URL http://jakarta.apache.org/bcel/

[4] Allen, E., Diagnosing java code: The case for static types (2002).
URL http://www.ibm.com/developerworks/java/library/j-diag0625.html

[5] Bachmann, F. et al., Volume II: Technical concepts of component-based software engineering, Technical
Report CMU/SEI-2000-TR-~008, Software Engineering Institute, Carnegie Mellon University (2000).

[6] Bauml, J. and P. Brada, Automated versioning in OSGi: a mechanism for component software
consistency guarantee, in: Proceedings of Euromicro SEAA (2009).

[7] Brada, P., “Specification-Based Component Substitutability and Revision Identification,” Ph.D. thesis,
Charles University in Prague (2003).

[8] Brada, P., Enhanced OSGi bundle updates to prevent runtime exceptions, in: Proceedings of the 34th
Euromicro SEAA conference (2008).

[9] Chaki, S., E. Clarke, N. Sharygina and N. Sinha, Verification of evolving software via component
substitutability analysis, Formal Methods in System Design 32 (2008).

[10] Chiba, S. and M. Nishizawa, An easy-to-use toolkit for efficient java bytecode translators, in: Proceedings
of the 2nd international conference on Generative programming and component engineering, Springer-
Verlag, New York, NY, USA, 2003, pp. 364-376.

[11] E.Bruneton, R. Lenglet and T. Coupaye, Asm: a code manipulation tool to implement adaptablesystems,
in: Adaptable and extensible component systems, Grenoble, France, 2002.

[12] Flores, A. and M. Polo, Testing-based process for evaluating component replaceability, in: Proceedings
of the 3rd International Workshop on Views On Designing Complex Architectures (VODCA 2008),
2009, pp. 101 — 115, Electronic Notes in Theoretical Computer Science, vol. 236.

[13] Forman, I. R., N. Forman, D. J. V. Ibm, I. R. Forman and N. Forman, Java reflection in action (2004).
[14] James Gosling, G. S., Bill Joy and G. Bracha, Java language specification, third edition (2005).

[15] Kniesel, G., P. Costanza and M. Austermann, Jmangler-a framework for load-time transformation of
java class files, in: IEEE International Workshop on Source Code Analysis and Manipulation (2001).

[16] McCamant, S. and M. D. Ernst, Formalizing lightweight verification of software component composition,
in: Proceedings of SAVCBS 2004: Specification and Verification of Component-Based Systems, Newport
Beach, CA, USA), 2004, pp. 47-54.

[17] NoUnit Team, NoUnit (2006), accessed 12/2009.
URL http://nounit.sourceforge.net/

[18] The OSGi Alliance, “OSGi Service Platform, Release 4,” (2005), available at http://www.osgi.org/.

[19] Puder, A. and J. Lee, Towards an XML-based bytecode level transformation framework, in: E. Albert
and S. Genaim, editors, Preproceedings of 4th International Workshop on Bytecode Semantics,
Verification, Analysis and Transformation, York, UK, 2009.

[20] Szyperski, C., “Component Software, Second Edition,” ACM Press, Addison-Wesley, 2002.

40

http://felix.apache.org/site/apache-felix-web-console.html
http://asm.ow2.org/
http://jakarta.apache.org/bcel/
http://www.ibm.com/developerworks/java/library/j-diag0625.html
http://nounit.sourceforge.net/

ByteCode 2010

Non-Intrusive Structural Coverage for
Objective Caml

Philippe Wang', Adrien Jonquet?, Emmanuel Chailloux®

Equipe APR
Laboratoire d’Informatique de Paris 6 (CNRS UMR 7606)
Université Pierre et Marie Curie (Paris 6)
4 place Jussieu, 75005 Paris, France

Abstract

This paper presents a non-intrusive method for Objective Caml code coverage analysis. While classic methods
rewrite the source code to an instrumented version that will produce traces at runtime, our approach chooses not
to rewrite the source code. Instead, we use a virtual machine to monitor instructions execution and produce traces.
These low-level traces are used to create a machine code coverage report. Combined with control-flow debug
information, they can be analyzed to produce a source code coverage report. The purpose of this approach is to
make available a method to generate code coverage analysis with the same binary for testing and for production.
Our customized virtual machine respects the same semantics as the original virtual machine; one of its original
aspects is that it is implemented in the Objective Caml, the very language we build the tool for.

This work is part of the Coverage project, which aims to develop open source tools for safety-critical embedded
applications and their code generators.

Keywords: Certification Tools Design, Code Coverage, Objective Caml Virtual Machine

1 Introduction

One of the most demanding development process for safety-critical software was
defined a couple of decades ago by the civil avionics authorities as the DO-178B
standard [17]. This standard notably contains all constraints ruling aircraft soft-
ware development. A very precise development process is imposed, and its pre-
ponderant activity is independent verification of each development step. Product
specifications are written by successive refinements, from high-level requirements
to design and then to implementation. Each step owns an independent verification
activity, which must provide a complete traceability of the requirements appearing
at this stage.

1 Email: Philippe.Wang@lip6.fr
2 Email: Adrien.Jonquet@lip6. fr
3 Email: Emmanuel .Chailloux@lip6.fr

mailto:Philippe.Wang@lip6.fr
mailto:Adrien.Jonquet@lip6.fr
mailto:Emmanuel.Chailloux@lip6.fr

WANG

The certification process, required before actually using such a software, mainly
consists in making a specification and testing process document reporting that soft-
ware specifications and implementation are tested by another entity to show that
its behaviour conforms to its specifications.

Code coverage reports are part of the documents required by the certification
process. They are generated from the program’s source code, and the execution
traces of the compiled program. The classic approach to obtain the latter is to add
instructions in the source code to produce them, while keeping the same semantics
otherwise. For instance, the Esterel Technologies company developed such a tool
for Objective Caml [14], a multiparadigm programming language [12], which is not
widely used in the safety-critical domain. However it has already been successfully
used for safety-critical development tools, e.g., a code generator written in Objective
Caml is used in Esterel Technologies’ SCADE Suite [15].

A different approach consists of keeping the same program without adding in-
structions but instead to run it in a modified execution context. This approach
means that the code coverage tools do not instrument the original program, so that
the binary executed for code coverage testing purpose can be the exact same binary
as for the final product. This is the core of the Coverage project * which interests
on the QEMU virtualizer and the ZINC machine [11], the Objective Caml virtual
machine, called ZaM ° here after.

Both approaches should produce the same reports, but the non-intrusive way
should shorten the traceability process because the exact same code can be executed
for both functional testing and coverage testing.

In this paper, we focus on this Objective Caml multiparadigm programming lan-
guage, which is distributed in an open source package that contains — among other
things — a compiler and a virtual machine. One major motivation for using Objective
Caml is that it has already been used with success in a certification framework.

We present ZAMCOV, a new ZAM implementation in Objective Caml, which pro-
duces traces at runtime for future code coverage analysis. This work will be com-
pared to Esterel Technologies’ approach.

This paper is organized as follows: section 2 describes a past experiment on
using Objective Caml in the safety-critical software domain; section 3 details the
project in which our work takes part; section 4 presents the ZAM machine and
our implementation, first step in non-intrusive code coverage process; section 5
shows non-intrusive code coverage process at the machine code level and how to
go from machine code coverage to source code coverage with our tool available
at http://www.algo-prog.info/zamcov and section 6 describes related work and
announces our future work in this project.

4 This project is supported in part by the SYSTEM@TIC PARIS-REGION Cluster in the Free and Open Source Soft-
ware thematic group (http://www.projet-couverture.com/). Two companies are involved in the development:

AdaCore and OpenWide, together with two academic partners: Telecom ParisTech and University Pierre et Marie
Curie (Paris 6).

5 ZaM stands for ZINC Abstract Machine

42

http://www.algo-prog.info/zamcov
http://www.projet-couverture.com/

WANG

2 Structural Coverage in Objective Caml by Esterel Tech-
nologies

The French company Esterel Technologies ¢ decided in 2006 to base its new SCADE
SUITE 6™ 7 [4,5] certifiable code generator on Objective Caml. Esterel Technolo-
gies markets SCADE SUITE 6™, a model-based development environment dedicated
to safety-critical embedded software. The code generator (KCG®) of this suite
that translates models into embedded C code is DO-178B compliant and allows
to shorten the certification process of avionics projects which use it.

The DO-178B standard applies to embedded code development tools with the
same criteria as the code itself. This means that the tool development must follow its
own coding standard. The certification standard originally targeted only embedded
software, so its application for a development tool must be adapted. For instance,
for a code generator it is accepted to use dynamic allocation and have recursive
functions. The specificity of the certification process for tools is under discussion
to be explicitly addressed by the forthcoming DO-178C standard that should be
effective soon.

2.1 Code Coverage and MC/DC (Modified Condition/Decision Coverage)

Among the numerous testing activities, one is making reports on code coverage.
This activity has a set of constraints other than just showing whether some code
is alive or dead: for instance, if a result is a complex Boolean expression, it is not
enough to show that it has been evaluated (to any value). Neither is it enough to
show it has taken both true and false values. Indeed, a complex Boolean expression
is composed with sub Boolean expressions, and these also have to have taken both
true and false values. Plus, if two subexpressions always return the same value, it
is suspicious: are they duplicated?

As any activity during a DO-178B compliant development process, the verifica-
tion activities are evaluated. Some criteria must be reached to decide that the task
has been completed. One of these criteria is the activation of any part of the code
during a functional test. On this particular point, more than a complete structural
exploration of the code, the DO-178B standard requires that a complete exploration
of the control flow has to be achieved following the MC/DC measurement that we
explain below.

» A decision is the Boolean expression evaluated in a test instruction to determine
the branch to be executed. It is covered if there exist tests in which it is evaluated
to true and false.

A condition is an atomic subexpression of a decision. It is covered if there exist
tests in which it is evaluated to true and false.

* MC/DC requires that, for each condition ¢ of a decision, there exist two tests
which must change the decision value while keeping the same valuations for all

6 http://www.esterel-technologies.com

7 SCADE stands for Safety Critical Application Development Environment; Scade is the programming language
provided by SCADE SUITE 6™.

8 KCG stands for qualifiable Code Generator.

43

http://www.esterel-technologies.com

WANG

conditions but c. It ensures that each condition can affect the outcome of the
decision and that all contribute to the implemented function (no dead code is
wanted).

MC/DC is properly defined on an abstract Boolean data flow language [10] with
a classical automata point of view. The measure is extended to imperative program-
ming languages, especially the C language, and is implemented in verification tools
able to compute this measure.

2.2 MlLcov: an Objective Caml Code Coverage Tool

MLcov [1] is an open source code coverage measurement tool for Objective Caml
developed by Esterel Technologies. MLcov only treats the functional and imperative
features of Objective Caml, which correspond to the subset allowed by the coding
rules of the Scade-to-C compiler. This subset remains quite large, for instance, it is
sufficient to compile the standard library of the Objective Caml distribution.

Coverage is measured by instrumenting the source code of the program. With
respect to Objective Caml, we state that an expression is covered as soon as its
evaluation ends. The main idea of the instrumentation algorithm is to replace each
expression expr with (let aux = expr in mark(); aux), where variable aux is
not free in expr, and mark () is a side-effect allowing to record that this point of the
program has been reached.

A program is structurally covered when every call to mark () in the instrumented
source code has been reached. This instrumentation algorithm, detailled in [14]
and consisting in adding a side-effect after each expression, systematically breaks
tail calls, thus forbids this optimization.

2.3 New certified KCG

The new developed-in-Objective-Caml KCG is certified with respect to IEC 61508
and EN 50128 norms. It is used in several civil avionics DO-178B projects (e.g., for
the A380 Airbus plane) and will be qualified simultaneously to the project qualifi-
cations (with DO-178B, the tools are not qualified by themselves, but by their usage
in a project).

3 Code Coverage with Non-Intrusive Tools: The Coverage
Project

The Coverage project, which started a year ago, aims at providing non-intrusive
coverage tools in a free software/open source context for safety-critical applications.

In the Coverage project, the main idea is not to instrument the code directly but
instead to instrument the runtime environment which executes the code as shown
in figure 1. This execution produces some traces which can be analysed offline (i.e.
after the execution) and mapped back to the original program source. In this case
the final machine code will be executed in a special runtime context.

Two (language x target machine) approaches are studied: the first is (Ada lan-
guage x PowerPC processors family), the second is (Objective Caml language x

44

WANG

Intrusive code coverage obtention method

decoration coverage

report
. ; instrumented
instrumentation
source :
instrumented P ——oa RS
compilation EXECUTABLE .
execution
BINARY
. EXECUTABLE
compilation BINARY

Non-Intrusive code coverage obtention method

decoration coverage

report

analysis
coverage test
execution traces

by VM

static analyses

information

EXECUTABLE
BINARY

compilation

Figure 1. Code Coverage Obtaining Methods Comparison

ZAM its own virtual machine). These two couples are used for safety-critical em-
bedded applications (Ada) and code generators (Objective Caml), including avion-
ics projetcs using the DO-178B standard.

For common traditional processors, QEMU [2] is used as a free-software emula-
tor (Power-PC, ...) which can generate traces. This allows non-intrusive analysis
on final target code with emulators running on development hosts. In this part,
the Adacore company develops tools which are independent from the language,
like Ada or C, and from the compiler, by using source DWARF [3] debug info. This
independance implies additional yet several restrictions for MC/DC.

For virtual machines, we have studied Objective Caml virtual machine to pro-
duce traces. These traces are analyzed after the execution to produce a structural
coverage report for machine code and source code. To make the link between ma-
chine code and source code, we use debug information added by the Objective
Caml compiler in the debug mode. This information, called events, indicates the
beginning or the end of an expression. With these events, the control flow graph of
a program can be rebuilt during or after an execution. For MC/DC analysis more
information is needed, so the original Objective Caml compiler has to be modified.
This will be discussed in section 6.

At mid-term of the project, we can present our progression in the two following

9 http://www.adacore.com

45

http://www.adacore.com

WANG

sections on machine code and source code coverage.

4 An Objective Caml Virtual Machine in Objective Caml

Generating a machine code coverage report first means to know the compiled pro-
gram’s binary format and semantics to interpret it, this work is done by a virtual
machine. Then, during interpretation, one needs to keep the execution flow for fur-
ther analysis; this work is done by a component plugged into the virtual machine.
In our case, we implemented an Objective Caml virtual machine such that it is easy
to extend with pluggable components. For this, we chose Objective Caml as the
implementation language, for several reasons:

* it is interesting to implement a virtual machine in the very language it is designed
for;

» it brings the bootstrap challenge, so the resulting tool can be used for itself;

» Objective Caml is strongly statically typed, so the interprete does not use unsafe
type casts

 and it permits to build applications that are naturally robust to components plug-
ins.

4.1 The Objective Caml Virtual Machine (ZAM)

ZAM is a stack-based virtual machine for a functional-based multiparadigm pro-
gramming language. It only uses 7 registers: an accumulator to store a value, a
code pointer (next instruction to interpret), a stack pointer, another stack pointer
for the highest exception handler, an extra arguments counter, an environment (a
value array) and a global data (a value array). ZAM interprets 146 different instruc-
tions, about 60% of which are shortcuts for several instructions combinations. 18
instructions are for arithmetic and Boolean operations.

Values are uniformly represented, it makes exploring a value easy, notably for
the garbage collection system. A value is either a integer encoded on 32-1=31
bits or 64-1=63 bits depending on the architecture, or a block value whose header
encodes a block tag on one byte (e.g., closure tag, string tag, double tag or variants)
and a block size. This integer representation is actually an optimization: since it is
often sufficient to have 31 or 63-bit (signed) integers, and since the weakest bit of
an address is never set to 1, it is possible to use 32 or 64-bit integers to represent
immediate integers. As a consequence, the compiler will automatically convert
some int values: e.g., 0 becomes 1, 1 becomes 3, n becomes n x 2+ 1, and arithmetic
operations are modified in consequence. Since increasing arithmetic operations
has a lower cost than having a pointer dereferencing, the loss of performance is
acceptable. An instruction is dedicated to recognizing an integer from a block:
IS_INT.

Objective Caml has functional values that are encoded as closures (functions
x environment), some specific instructions handle to them (e.g., APPLY, CLOSURE,
CLOSUREREC, GRAB, OFFSETCLOSURE).

46

WANG

4.2 Existing Objective Caml Virtual Machine Implementations

The Objective Caml virtual machine has several implementations, the original one
is in C, one is in Java and another is in JavaScript. They are quickly described as
follows.

e In C code: The INRIA standard distribution provides a virtual machine imple-
mented in C code, it is likely the most efficient implementation available. Its
written-in-C runtime library is the same as the one used with hardware machine
programs that are produced by the native compiler.

» In Java code: The Java implementation, called Cadmium [7], allows an Objec-
tive Caml program to be executed on any machine that has a Java Virtual Ma-
chine, without having to install the whole Objective Caml system. For instance,
this can be used to easily run Objective Caml programs on a web page. Parts of its
runtime library rely on Java runtime library such as garbage collection, the other
part is in Java.

e In JavaScript: The JavaScript implementation, called O’Browser [6], gives the
possibility to write dynamic web page components (that are usually written in
JavaScript) in Objective Caml. As it is not relevant to have exactly the same
runtime library as the original distribution, an alternative version provides an
interface with web page related functions.

4.3 Our New Implementation in Objective Caml itself

It is important to note that whereas Objective Caml is strongly statically typed,
its virtual machine is untyped. This design was motivated by the guarantee that
static type checking process frees the runtime process from making any type checks.
Writing an Objective Caml virtual machine in Objective Caml implies writing an
untyped virtual machine for a strongly typed programming language in a strongly
typed programming language. It is analog with the runtime library: Objective Caml
runtime library has two parts: the low-level part is a set of C functions that may
access low-level data representations, and the high-level part is a set of Objective
Caml functions that may use functions implemented in C code.

47

WANG

We chose to implement ZAMCOV values type as follows:

type tag = type value =
| Structured_tag of int | Int of int
| Closure_tag | Float of float
| Object_tag | String of string
| Abstract_tag | Block of block
| |

and block = { tag : tag; data : value array; ... }

From a bytecode binary, ZAMCOV initializes a virtual machine data structure with
the instructions section, the global data section and the set of external functions.
Then the interpreter function is linked to this data structure to make it able to run
instruction by instruction: it is easy to plug a component into the interpreter.

The original standard library is a set of Objective Caml functions, some of which
call some C code. For instance, operations on files are implemented with C functions
encapsulated for Objective Caml. When compiling an Objective Caml function to
bytecode instructions, there are two cases:

 the underlying functionality is in C code: the bytecode will contain C_CALL in-

structions 1°;

o it is fully in “pure” Objective Caml: bytecode instructions do not contain C_CALL
instructions.

The first case is not trivial with an alternative bytecode interpreter. In our case,
with ZAMcov, C_CALL instructions will be interpreted by an Objective Caml func-
tion, and will mean calling an Objective Caml function. Thus, for instance, when
calling a I/0 operation (or any operation that cannot be directly represented by
some bytecode instructions), an indirection is added. The source code in Objec-
tive Caml is compiled to bytecode, which is then interpreted by an Objective Caml
program.

For instance, to call a C function foo from the original virtual machine, the
C_CALL instruction is used with "foo" as first argument and it will call the C func-
tion. This C function cannot be called directly at the interpretation of a C_CALL
instruction, because our value representation is different.

Implementing the runtime library is a weird constraint: the original runtime
library is implemented in low-level C code, and this is a behaviour that has to
be reproduced in our Objective Caml runtime library. For instance, comparison
functions (which compare data structures in depth) are based on the comparison
function (val compare : ’a -> ’a -> int) which is implemented in C code as
part of the runtime library, and since our data representation is not exactly the
same, we cannot use it directly when the machine code invokes function compare
as a C call. This means we had to implement in Objective Caml the comparison
function for our data representation that emulate the original data representation.

10 There is a set of “C call” instructions (C_CALL[1-5], C_CALL_N) that allows the bytecode to call external
functions (i.e. functions that are not to be compiled to bytecode).

48

WANG

Indeed, one constraint was not to break the type checker because otherwise
implementing first draft of the virtual machine would have been quicker but its
debugging would have been a nightmare.

5 ZAMcoV’s code Coverage Tools

5.1 Execution trace generation

The first component plugs itself in the instructions interpreter and keeps trace of
which instructions are executed. Thanks to the design of our virtual machine im-
plementation, it is quite easy to write and plug a component into it. The trace
is an array whose length equals the code section’s length of the bytecode. When
an instruction of the code section is executed, the trace’s element whose index is
the address of the instruction in the bytecode is marked as “covered”. The Objective
Caml array, which contains the execution trace, is serialized in an external file when
ZamMmcov ends the interpretation of the program.

5.2 Machine Code Coverage

Traces are analyzed after the execution to generate an instruction coverage report
(in HTML format). The first report is a machine code coverage report. This report
represents a list of all non-covered (never executed) bytecode instructions.

Here is an example of the machine code coverage report of a simple factorial
program:

let rec fact x = This program is a simple function computing
if x = 0 then 1 the factorial. Application fact 5 does not
else if x = 1 then 1 allow the first test (x = 0) to become true,
else x * (fact (x-1));; therefore the first branch, which returns 1,

is not taken.
fact 5;;

First we need to compile the fact.ml file
with standard ocamlc compiler. Then,
ocamlc fact.ml -o fact . .
with zamcov-run we interpret and gen-
zamcov-run -trace fact.trace fact .
zamcov -cover fact.trace fact erate the execution trace of the program
fact and we build the coverage report
with zamcov-cover.

00000002 ACCO The code sample on the left shows part of the machine
00000003 Rug code coverage result for program factorial. There are
00000006 [CONSTT) .

00000007 RETURN some boxed instructions: they are never executed and
00000009 ACCO correspond to the code which returns the constant 1,

00000010 BNEQ
00000013 CONST1
00000014 RETURN

which indeed is not executed in the factorial example.

Then one question was to know whether there was an equivalence between
machine code coverage and source code coverage, as such an equivalence would

49

WANG

remove the need for source code coverage. We will see in the rest of the paper that
they are not equivalent.

5.3 Source Code Coverage

The central role of ZAMCOV’s virtual machine is to interpret Objective Caml pro-
grams compiled to bytecode by standard distribution’s compiler ocamlc. This sec-
tion presents a ZAMCOV component that generates the execution trace (representing
all executed bytecode) instructions during the interpretation.

This trace only contains information about bytecode instructions, such as in-
structions names or their addresses in the bytecode. Hence, we need a mean to link
this information with the source code.

Using Debug Events to Generate a Code Coverage Report

Debug events are debug information added by the compiler when using debug
option “-g”. They are used by ocamldebug, the Objective Caml debugger. These
events are not in program’s code section. There are not differences in this section
for a program compiled with or without the debug option. This is important be-
cause ZAMCOV is a non-intrusive code coverage tool, so it is not supposed to modify
the source code or the bytecode of the program. Debug events are located in an
independent section of the program binary, not in the code to be interpreted, so
they could be in a separate file only visible by the virtual machine if needed.

A debug event is a data structure linked with an Objective Caml expression
during the compilation with the standard compiler (ocamlc). Debug events are
located strategically in an Objective Caml program as shown in figure 2.

A debug event contains a lot of information about its expression:

» the location of the expression in the source code;

« the first bytecode instruction address corresponding to the Objective Caml ex-
pression.

The address in the bytecode recorded by the debug event is the missing link with
the execution trace.

Coverage of Objective Caml expressions

ZAaMcovV is also a source code coverage measurement tool. First coverage level
is statement coverage. Objective Caml is a functional-based language (a program
is an expression evaluation), so every “statement” is actually an “expression”. In
Objective Caml, it is more appropriate to report an “expression coverage”. This
kind of source code coverage checks if all Objective Caml expressions written in the
source code are evaluated at least once. An expression coverage tool must show
in coverage reports which expressions are not evaluated in the source code. These
expressions are called “non-covered expressions” (or dead code), and evaluated
expressions are called “covered expressions”.

ZaMcov uses debug events and execution traces to check which expressions in
the source code are covered or non-covered. Debug events contain information to
associate bytecode instructions addresses to their corresponding source code. So,

50

WANG

cessor;
* ¢, e, OI ¢, represent an expression;

» and $$ represents a debug event.

We define F' and G recursively as the functions that respectively place debug
events in expressions and pattern-matching branches.

» P represents a pattern-matching branches set, unfolded as p; [when ¢;] — e;
which is a shortcut for py [when co] — eg | ... | pn [Wwhen ¢,] — en;

* p or p, represent a pattern, which is a variable identifier or a structural ac-

F(atom) = atom (constant value or identifier)
F(eo e1) = (F(eo)) (F(er)) $9
F(let [rec]p = epinej) = let [rec]p = F(eg) in F(e1)
F(funp...pp, — €) = funpy ... pp, — 3 F(e)
F(function P) = function G(P)
F(match e with P) = match F(e) with G(P)
F(try ewith P) = try F(e) with G(P)
F(eo; e1) = (F(ep); $$ F(e1))
F(if eg then e [else e3]) = if F(ep) then $$ F(e1) [else $$ F(e2)]
F(while eg do €1 done) = while F(eg) do $% F(e1) done
F(fori = egtoej doeydone) = fori = Fl(ep) to F(ey) do $$ F(eq) done
F(eg#m) = F(eg)#m $3
where m represents the name of a method

G(P) = p; [when F(c;)] — $$F(e;)

Figure 2. Debug Events Placement in Expressions

to report source code coverage, for each debug event, if its associated bytecode in-
structions have been activated according to the execution traces, then its associated
source code is covered. If a debug event cannot be related with the execution trace,
it means that the associated expression is non-covered.

ocamlc -g fact.ml -o fact
zamcov-run -trace fact.trace fact
zamcov-cover fact.trace fact

This time, we compile the .ml file with
option “-g” given to the standard ocamlc
compiler to generate debug events for
zamcov-cover to produce the source code
coverage. Then, as for machine code cov-
erage, with zamcov-run we interpret and
generate the execution trace of the pro-
gram fact and we build the coverage re-
port with zamcov-cover.

51

WANG

There is on the left an expression coverage

Coverage report report generated by ZAMcov of a simple

Objective Caml program (factorial). This
Trace Filename Program Name report shows the source code files list of
fact.trace fact the coverage-measured program. FEach file

has a expression coverage rate which shows
the difference between the number of non-
covered debug events and the total number
. of debug events. For each file, there is a link
Object code coverage report to its source code coverage. There is also an
HTML link to the machine code coverage of
the program.

Source Filename Expression coverage

fact.ml 85% 6“

fact

ZamCov: Expression Coverage . .
P g Link “fact.ml” allows to obtain its source

fact.ml

() code coverage page. In the screenshot on

let rec fact x = the left, text highlighted in green (light
if x = 0 then gray) is executed code (covered), and in red
else if x = 1 then 1 .
else x * (fact (x-1));; (dark gray) is code that has never been exe-

cuted (non-covered).
fact 5;;

Zam : Expression r . .
amCov pression Coverage x = 0 is never executed when calling

(fact.ml) fact 5, that is why the first 1 is non-
let rec fact x = covered. The structural coverage of this ex-
if x = 0 then 1 ample is not complete. For function fact
else if x = 1 then 1 .
else x * (fact (x-1));; to be fully covered (expression coverage),
we need to add more tests as shown in the
fact 5;;
fjgt 0 screenshot on the left.

6 Related and Future Work

6.1 Other coverage tools in Objective Caml

The official Objective Caml distribution provides two profiler tools. The first one
— for bytecode programs — instruments original source and counts each computed
expression. The second one modifies the native code generator to produce informa-
tion which can be used by gprof [9].

Ocamlviz [16] is a new graphical tool for real-time profiling in Objective Caml.
It uses alarms to collect and send data. These data can be processed by a graphical
interface during execution.

These different tools cannot produce MC/DC report, the only MC/DC coverage
tool for Objective Caml is MLcov that we described in section 2.2. All these tools
are intrusive.

52

WANG

6.2 Other coverage tools for different virtual machines

For more classical virtual machines, as the Java Virtual Machine (JVM) or the Com-
mon Language Runtime (CLR) of the .NET environment, we find a lot of libraries
to build debug tools. They offer a set of services which exposes runtime events
that occur during the execution. In Java, JVMTI (Java Virtual Machine Tool In-
terface) ! allows to write agents which can be notified of interesting occurrences
through events. In .NET, the CLR Profiling API can provide notification of many
activities within the CLR and managed code.

A good overview describing different ways to instrument Java code is presented
in [8]. This bibliographical study compares different static and dynamic instru-
mentation techniques at source or bytecode level, including hybrid combinations,
for Java. Examples using a specialized virtual machine are scarce, mainly for porta-
bility and efficiency criteria which can be important for monitoring or optimizing
tools.

In our case, portability is guaranteed because we use the same runtime with
and without execution traces. The loss of performance efficiency with ZAmMcov is
acceptable for this kind of tools.

6.3 MC/DC for ZAMCOV

The next objective of ZAMCOV is to offer a

ZamCov: Expression Coverage Decision, Condition and MC/DC measure-
(abs.ml) ment tool. ZAmcov will need to identify
Boolean expressions evaluation at run-time.
let abs x = Notably, a complete statement coverage is
let y = ref 0 in . . .
9% 53 2y Ghom 3 B i not equivalent to a decision coverage. In the
'y;; example on the left, all the statements are
abs (-5);; . .
covered but the decision only takes value
false.

ZAMCOV needs to analyse these values to generate a report that shows in the
source code which decisions satisfy MC/DC and which don’t. The operation needs
to go back to the source.

The main issue is that we need to recognize Boolean expressions in the machine
code, and this is not possible without specific source code analysis information.
Indeed, as the machine code is untyped, it is not possible to know the difference
between an integer and a Boolean value, it is neither possible to know in all cases
if a branch is introduced by a conditional expression or by a Boolean operator, or
even a pattern-matching filter.

Adding new debug events requires the modification of Objective Caml’s bytecode
compiler. Indeed, we need to be able to identify &&, | | and not Boolean operations
in the source code and link them with the machine code to produce Boolean vectors
at run-time.

11 JVMTI has replaced the JMVPI (JVM Profiler interface) [13] and JVMDI (JVM Debug Interface).

53

WANG

7 Conclusion

In this paper, we have presented a new approach for structural code coverage anal-
ysis without code instrumentation but only runtime environment instrumentation.
This approach has been used to build ZaMcov, a tool dedicated to Objective Caml’s
virtual machine. Our criteria of success is to produce the same reports as MLCOV,
the open source code coverage measurement tool developed by Esterel Technolo-
gies for their certifiable code generator (KCG) written in Objective Caml. It will be
reached for expression coverage (statement coverage) without any change in the
Objective Caml compiler. But for MC/DC coverage, it will be mandatory to add new
debug information systematically around Boolean expressions to check the condi-
tion/decision coverage to produce traces which can be analysed to measure the
MC/DC coverage.

This approach can be used for any compiler that generates ZAM code with the
appropriate events, if need be. This indicates a strong link between the compiler
schemes and the debug events to map back to the original source.

It can be surprising to associate Objective Caml and bytecode for safety-critical
software development tool. But the Esterel experiment has opened this way by
using Objective Caml in a complete certification process. The introduction of virtual
machine to build certifiable development tool is interesting for its non-intrusive
approach: real code is analysed and not an equivalent but instrumented code.

This work takes place in the Coverage Project which studies non-intrusive cov-
erage tools for Ada (to Power-PC) and Objective Caml (to ZAM). In the first case
the QEMU emulator is used and in the second the ZAM virtual machine. But the
compiler information needed by the modified runtime environment for the MC/DC
measurement are similar for both languages.

Finally this work makes the link between two communities: DO-178B world and
free open source software, by building the first part of a non-intrusive structural
coverage tool. It joins the effort for openDO '? | towards a cooperative and open
framework for the development of certifiable software.

References

[1] MLcov, http://www.algo-prog.info/mlcov.
[2] Qemu documentations, http://www.gemu.org.
[3] The DWARF Debugging Standard (2007), http://dwarfstd.org.

[4] Berry, G., The Effectiveness of Synchronous Languages for the Development of Safety-Critical Systems, Technical
report, Esterel-Technologies (2003).

[5] Camus, J.-L. and B. Dion, Efficient Development of Airborne Software with SCADE Suite™ Technical report,
Esterel-Technologies (2003).

[6] Canou, B., V. Balat and E. Chailloux, O’Browser : Objective Caml on Browsers, in: Proceedings of the 2008 ACM
SIGPLAN Workshop on ML The 2008 ACM SIGPLAN Workshop on ML, 2008, pp. 69-78,
http://www.pps.jussieu. fr/~canou/obrowser/tutorial/.

[7] Clerc, X., Cadmium (2007), http://cadmium.x9c. fr.

12 http://www.open-do.org/

54

http://www.algo-prog.info/mlcov
http://www.qemu.org
http://dwarfstd.org
http://www.pps.jussieu.fr/~canou/obrowser/tutorial/
http://cadmium.x9c.fr
http://www.open-do.org

WANG

[8] Delahaye, M., Instrumentation of Java code : bibliographical study (in French) (2007),
ftp://ftp.irisa.fr/local/caps/DEPOTS/BIBLI02007/biblio_delahaye mickael.pdf.

[9] Graham, S. L., P. B. Kessler and M. K. McKusick, gprof: a call graph execution profiler (1982).

[10] Hayhurst, K. J., D. S. Veerhusen, J. J. Chilenski and L. K. Rierson, A Practical Tutorial on Modified
Condition/Decision Coverage, Technical report, NASA/TM-2001-210876 (2001).

[11] Leroy, X., The ZINC Experiment : an Economical Implementation of the ML Language, Technical Report 117,
INRIA (1990).

[12] Leroy, X., The Objective Caml system release 3.10 : Documentation and user’s manual, Technical report, Inria
(2008), http://caml.inria. fr.

[13] O’Hair, K., The JVMPI Transition to JVMTI (2004),
http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition.

[14] Pagano, B., O. Andrieu, B. Canou, E. Chailloux, J.-L. Colaco, T. Moniot and P. Wang, Certified Development

Tools Implementation in Objective Caml, in: P. Hudak and D. S. Warren, editors, Practical Aspects of Declarative
Languages (PADL 08), Lecture Notes in Computer Science 4902 (2008), pp. 2-17.

[15] Pagano, B., O. Andrieu, T. Moniot, B. Canou, E. Chailloux, P. Wang, P. Manoury and J.-L. Colaco, Experience
Report: Using Objective Caml to Develop Safety-Critical Embedded Tools in a Certification Framework, in:
International Conference of Functional Programming (ICFP 09), 2009.

[16] Robert, J. and G. V. Tokauski, Ocamlviz : reference manual (2009), http://ocamlviz. forge.ocamlcore.org.

[17] RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certification (1992), Radio
Technical Commission for Aeronautics RTCA.

55

ftp://ftp.irisa.fr/local/caps/DEPOTS/BIBLIO2007/biblio_delahaye_mickael.pdf
http://caml.inria.fr
http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition
http://ocamlviz.forge.ocamlcore.org

ByteCode 2010

Encoding the Java Virtual Machine’s
Instruction Set

Michael Eichberg! Andreas Sewe?

Department of Computer Science
Technische Universitdt Darmstadt
Germany

Abstract

New toolkits that parse, analyze, and transform Java Bytecode are frequently developed from scratch to
obtain a representation suitable for a particular purpose. But, while the functionality implemented by these
toolkits to read in class files and do basic control- and data-flow analyses is comparable, it is implemented
over and over again. Differences manifest themselves mainly in minor technical issues. To avoid the
repetitive development of similar functionality, we have developed an XML-based language for specifying
bytecode-based instruction sets. Using this language, we have encoded the instruction set of the Java
Virtual Machine such that it can directly be used, e.g., to generate the skeleton of bytecode-based tools.
The XML format hereby specifies both the format of the instructions and their effect on the stack and the
local registers upon execution. This enables developers of static analyses to generate generic control- and
data-flow analyses, e.g., an analysis that transforms Java Bytecode into static single assignment form. To
assess the usefulness of our approach, we have used the encoding of the Java Virtual Machine’s instruction
set to develop a framework for the analysis and transformation of Java class files. The evaluation shows that
using the specification significantly reduces the development effort when compared to manual development.

Keywords: Java Bytecode, Java Virtual Machine Specification, XML

1 Introduction

The development of programs that parse and analyze Java Bytecode [9] has a long
history and new programs are still developed [2,3,4,7,13]. When developing such
tools, however, a lot of effort is spent to develop a parser for the bytecode and
for (re-)developing standard control- and data-flow analyses which calculate, e.g.,
the control-flow graph or the data-dependency graph.

To reduce these efforts, we have developed a specification language (OPAL SPL)
for encoding the instructions of stack-based intermediate languages. The idea is
that—once the instruction set is completely specified using OPAL SPL—generating
both bytecode parsers and standard analyses is much easier than their manual
development. To support this goal, OPAL SPL supports the specification of both

! E-mail: eichberg@informatik.tu-darmstadt.de
2 E-mail: sewe@st.informatik.tu-darmstadt.de

mailto:eichberg@informatik.tu-darmstadt.de
mailto:sewe@st.informatik.tu-darmstadt.de

EICHBERG

Bytecode Toolkit

Class File Reader |
Specification Tnitialize » .
<instructions> Instruction Reader Constant Pool Reader
<instruction > or
< /instructions> generate 1 — —
Control- / Data ow Analyses Class Hierarchy Analysis

Fig. 1. Use Cases for OPAL SPL Specifications

the format of bytecode instructions and the effect on the stack and registers these
instructions have when executed. An alternative use of an OPAL SPL specification
is as input to a generic parser or to generic analyses as illustrated by Fig. 1.

Though the language was designed with Java Bytecode specifically in mind and
is used to encode the complete instruction set of the Java Virtual Machine (JVM),
we have striven for a Java-independent specification language. In particular, OPAL
SPL focuses on specifying the instruction set rather than the complete class file for-
mat, not only because the former’s structure is much more regular than the latter’s,
but also because a specification of the instruction set promises to be most benefi-
cial. Given the primary focus of OPAL SPL—generating parsers and facilitating
basic analyses—we explicitly designed the language such that it is possible to group
related instructions. This makes specifications more concise and allows analyses to
treat similar instructions in nearly the same way. For example, the JVM’s iload_5
instruction, which loads the integer value stored in register #5, is a special case of
the generic iload instruction where the instruction’s operand is 5. We also designed
OPAL SPL in such a way that specifications do not prescribe how a framework
represents or processes information; i.e., OPAL SPL is representation agnostic.

The next section describes the specification language. In Section 3 we reason
about the language’s design by discussing the specification of selected JVM instruc-
tions. In Section 4 the validation of specifications is discussed. The evaluation of
the approach is presented in Section 5. The paper ends with a discussion of related
work and a conclusion.

2 Specifying Bytecode Instructions

The language for specifying bytecode instructions (OPAL SPL) was primarily de-
signed to enable a concise specification of the JVM’s instruction set. OPAL SPL
supports the specification of both an instruction’s format and its effect on the stack
and local variables (registers) when the instruction is executed. It is thus possible
to specify which kind of values are popped from and pushed onto the stack as well
as which local variables are read or written. Given a specification of the complete
instruction set the information required by standard control- and data-flow analyses
is then available.

However, OPAL SPL is not particularly tied to Java as it abstracts from the
particularities of the JVM Specification. For example, the JVM’s type system is

3 The complete specification is available at http://www.michael-eichberg.de/opal.

57

http://www.michael-eichberg.de/opal

EICHBERG

part of an OPAL SPL specification rather than an integral part of the OPAL SPL
language itself.
Next, we first give an overview of the language before we discuss its semantics.

2.1 Syntax
1. INSTRUCTIONS ::= instructions < TYPES EXCEPTIONS FUNCTIONS INSTRUCTION+ >
2. TYPES ::= types < TYPEDEF > // a common root type is required
3. TYPEDEF ::= type @name @pc? < TYPEDEF* >
4. EXCEPTIONS ::= exceptions < (exception @type)+ >
5. FUNCTIONS ::=
functions (< function @name < signature < (param @type)* (returns @type) > > >)*
6. INSTRUCTION ::=

instruction @mnemonic @deprecated? Qtransfers_control?
< appinfo < /APPLICATIONSPECIFICCONTENT* >
format < SEQUENCE+ >
(stack < (form < before < BEFOREOP+ > after < AFTEROP+ > >)+ >)7
(registers < LOAD? STORE? >)7
(exceptions < (exception @type)+ >)7 >
7. SEQUENCE ::= sequence
(SEQELEM | padding_bytes Q@alignment | list @count @var < SEQELEM+ > |
(implicit @var < /VALUEEXPRESSION >) | (implicit_type @type < /TYPEEXPRESSION >))+

8. SEQELEM ::= { ul | u2 | u4 | i1 | i2 | i4 } @type? @var? < /EXPECTEDVALUE? >

9. BEFOREQOP ::= ((operand @type @var?) | (list @loop_var? Qcount < BEFOREOP >))* rest?
10.AFTEROP ::= (operand @type < /VALUEEXPRESSION? >) rest?

11.LOAD ::= load @type @index Qvar

12.STORE ::= store @type Q@index < /VALUEEXPRESSION >

Fig. 2. Grammar of the OPAL Specification Language (OPAL SPL)

The OPAL Specification Language (OPAL SPL) is an XML-based language. Its
grammar is depicted in Fig. 2 using an EBNF-like format. Non-terminals are written
in capital letters (INSTRUCTIONS, TYPES, etc.), the names of XML-elements
are written in small letters (types, stack, etc.) and the names of XML-attributes
start with “@” (Qtype, @var, etc.). We refer to the content of an XML-element
using symbols that start with“/” (/VALUEEXPRESSION, /EXPECTEDVALUE,
etc.). “<>” is used to specify nesting of elements. “(),?,+,*,{},|” have the usual
semantics. For example, exceptions < (exception @type)+ > specifies that the
XML-element exceptions has one or more exception child elements that always
have the attribute type.

2.2 Semantics

Format Specification

Each specification written in OPAL SPL consists of four major parts (line 1 in
Fig. 2). The first part (types, lines 2-3) specifies the type system that is used by the
underlying virtual machine. The second part (exceptions, line 4) declares the excep-
tions that may be thrown when instructions are executed. The third part (functions,
line 5) declares the functions that are used in instruction specifications. The fourth
part is the specification of the instructions themselves (lines 6-12), each of which
may resort to the declared functions to access information not simply stored along
with the instruction. For example, invoke instructions do not store the signature
and declaring class of the called methods. Instead, a reference to an entry in the
so-called constant pool is stored. Only this constant pool entry has all information
about the method. To obtain, e.g., the return type of the called method, an abstract
function TYPE methodref_return_type(methodref) is declared that takes a reference

58

EICHBERG

to the entry as input and returns the method’s return type. Using abstract func-
tion declarations, we abstract—in the specification of the instructions—from the
concrete representation of such information by the enclosing bytecode toolkit.

The specification of an instruction consists of up to four parts: the instruction’s
format (lines 7-8), a description of the effect the instruction has on the stack when
executed (lines 9-10), a descriptions of the registers it affects upon execution (lines
11-12), and information about the exceptions that may be thrown during execu-
tion (end of line 6). An instruction’s format is specified by sequences which describe
how an instruction is stored. The ul, u2 and u4 elements (line 8) of each format
sequence specify that the current value is an unsigned integer value with 1, 2 and 4
bytes, respectively. Similarly, the i1, i2 and i4 elements (line 8) are used to specify
that the current value is a (1, 2 or 4 byte) signed integer value. The values can
be bound to variables using the var attribute and can be given a second semantics
using the type attribute. For example, <i2 type="short” var="value" /> is a two-
byte signed integer value that is bound to the variable value and has type short with
respect to the instruction set’s type system. Additionally, it is possible to specify ex-
pected values (line 8). This enables the selection of the format sequence to be used
for reading in the instruction. E.g., <sequence><ul var="opcode" >171...
specifies that this sequence matches if the value of the first byte is 171. A se-
quence’s list element is used to specify that a variable number of values need to be
read. The concrete number of elements is determined by the count attribute. The
attribute’s value is an expression that can use values that were previously assigned
to a variable. The sequence elements implicit and implicit_type are used to bind
implicit value and type information to variables that can later on be used in type
or value expressions (line 7, 10 and 11). To make it possible to aggregate related
bytecode instructions to one logical instruction, several format sequences can be
defined. The effect on the stack is determined by the number and type of stack
operands that are popped (line 9) and pushed (line 10). If multiple stack layouts
are specified, the effect on the stack is determined by the first before-execution stack
layout that matches; i.e., to determine the effect on the stack a data-flow analysis
is necessary.

Unique Prefix Rule

One constraint placed upon specifications written in OPAL SPL is that a format
sequence can be identified unambiguously by only parsing a prefix of the instruction;
no lookahead is necessary. In other words, if each format sequence is considered a
production and each ul, u2, etc. is considered a terminal, then OPAL SPL requires
the format sequences to constitute an LR(0) grammar.* This unique prefix rule is
checked automatically (cf. Sec. 4); furthermore, this rule facilitates generating fast
parsers from the specification, e.g., using nested switch statements.

Type System
OPAL SPL does not have a hard-coded type hierarchy. Instead, each specifica-
tion written in SPL contains a description of the type system used by the bytecode

4 Note that OPAL SPL does not have a notion of non-terminal; thus, the grammars are actually weaker
than LR(0). Also, the list element (cf. Sec. 3.8) is allowed only following a unique prefix.

99

EICHBERG

o byte_or_boolean [« boolean

void char byte

category_0_value

/ int_like

run_time_type | category_1_value [« reference_or_absolute_address

short

A

int

arrayref

branchoffset

\ /
i float reference

«pc=relativey scalarref

/ Iv_index category_2_value [« long absolute_address *
o upc=absolutes java.lang. Throwable
type [cp_index double
\ typeref o
FLOAT
fieldref]
RUN_TIME_TYPE |<— CATEGORY_1_VALUE
|
TYPE A
methodref |

Fig. 3. OPAL SPL Type System

language being described. The only restriction is that all types have to be arranged
in a single, strict hierarchy.

The Java Virtual Machine Specification [9]’s type hierarchy is shown in Fig. 3 (1).
It captures all runtime types known to the Java virtual machine, as well as those
types that are used only at link- or compile-time, e.g., branchoffset, fieldref and
methodref. The hierarchy is a result of the peculiarities of the JVM’s instruction
set. The byte_or_boolean type, e.g., is required to model the baload and bastore
instructions, which operate on arrays of byte or boolean alike.

OPAL SPL’s type system implicitly defines a second type hierarchy ((2) in Fig.
3). The declared hierarchy of types (1) is mirrored by a hierarchy of kinds (2);
for every (lower-case) type there automatically exists an (upper-case) kind. This
convention ensures their consistency and keeps the specification itself brief. The
values of kind INT_LIKE are int, short, etc., just as the values of type int_like are
1, 2, etc. Kinds enable parameterizing logical instructions like areturn with types,
thus making a concise specification of related instructions (e.g., freturn, ireturn,
and areturn) possible (cf. Sec. 3.12).

Information Flow

In OPAL SPL, the flow of information (values, types, register IDs) is modeled by
means of named variables and expressions using the variables. In general, the flow of
information is subject to the constraints illustrated by Fig. 4. For example, variables
defined within a specific format sequence can only be referred to by later elements
within the same format sequence; a variable cannot be referred to across format
sequences. If the same variable is bound by all format sequences, i.e., it is common
to all format sequences, then the variable can be used to identify register IDs, the
values pushed onto the stack, etc. Similarly, if an instruction defines multiple stack

60

EICHBERG

Common
Format Sequence Information
(N\
.. - h
N

1st : SeqElem)
2nd : SeqElem
ad type bindings

P value bindings
register |D
type bindings

|
]
]
]
]
]
]
: A Format Sequence
]
]
]
]
|
]
]
]

register I1Ds

N

Load
1L Stack L Registers
. Stack Layout .@.. b
______ _ efore
Before m no .. execution
execution
|

values values

_______________ v

Store

Registers

.@.. after

1. Stack Layout execution
m no ..

1

1

1

1

1

1

After |
execution :
1

1

Fig. 4. Flow of information when parsing an instruction

layouts, then a value can only flow from the i-th stack layout before execution to
the i-th stack layout after execution and only information that is common to all
stack layouts before execution may be stored in a register.

3 Design Discussion

The design of the OPAL specification language (OPAL SPL) is influenced by the
peculiarities of the JVM’s instruction set [9, Chapter 6]. In the following, we discuss
those instructions that had a major influence on the design.

3.1 Modeling the Stack Bottom (athrow)

All JVM instructions—with the exception of athrow—specify only the number and
types of operands popped from and pushed onto the stack; they do not determine
the layout of the complete stack. In case of the athrow instruction, however, the
stack layout after its execution is completely determined (Fig. 5, line 6); the single
element on the stack is the thrown exception. This necessitates explicit modeling
of the stack’s contents beyond the operands that are pushed and popped by a

61

EICHBERG

particular instruction. The explicit modeling of the rest of the stack (line 5) hereby
allows for the (implicit) modeling of stacks of a fixed size (line 6).

<instruction mnemonic="athrow" transfers_control="always" >

1
2 L.
3] <stack> <form>

4 <before> <operand type="java.lang. Throwable” var="exception" />

5 <rest /> </before>

6 <after> <operand type="java.lang. Throwable” >exception< /operand> </after>
71 </form> </stack>

8

9

</instruction >

Fig. 5. OPAL SPL specification of the athrow instruction

3.2 Pure Register Instructions (iinc)

The flow of information for instructions that do not affect the stack—e.g., the
JVM’s iinc instruction—is depicted in Fig. 7 and adheres to the general scheme of
information flow (cf. Fig. 4). After parsing the instruction according to the format
sequence (Fig. 6, lines 3-5, the two variables Ivindex and increment are initialized.
The value of the former variable is then used to identify the register whose value is
to be incremented. The register’s value is thus bound to the variable value, which
is incremented and stored back into the same register.

1/ <instruction mnemonic="iinc" >

2| <format>

3 <sequence> <ul var="opcode" >132

4 <ul type="Iv_index" var="IvIndex" />

5 <il type="byte" var="increment” /> < /sequence>
6 -

71 </format>

8 <stack> <form>

9 <before> <rest/> < /before>

10 <after> <rest/> </after>

11 </form> < /stack>

12 < registers >

13 <load type="int" var="value" index="IvIndex" />

14 <store type="int" index="IvIndex" >add(value, increment)< /store>
15, </ registers>

16/ </instruction >

Fig. 6. OPAL SPL specification of the iinc instruction

This encoding illustrates OPAL SPL’s capability to model instruction sets of
register-based VMs; their instructions simply do not affect the stack (lines 9-10),
but only the registers (lines 13-14).

3.3 Interpretation of Arithmetic Instructions (iinc, add, sub, etc.)

The specification of iinc (Fig. 6) also illustrates OPAL SPL’s ability to model
computed values, e.g., add(value, increment). This information can subsequently
be used, e.g., by static analyses to determine data dependencies or to perform
abstract interpretations.

5 Note that iinc also supports a second, wide format sequence which binds the same two values.

62

EICHBERG

Format Sequence opcode : ul
Ivindex :
(Iv_index) ul []
e increment : Registers
short) il
(A\) > value e
Load
Store

Fig. 7. Flow of information of the iinc instruction

3.4 Constant Pool Handling (1dc)

The Java class file format achieves its compactness in part through the use of a
constant pool. Hereby, immediate operands of an instruction are replaced by an
index into the (global) pool. For example, in case of the load constant intruction Idc,
the operand needs to be programmatically retrieved from the constant pool (Fig. 8,
line 5). To obtain the value’s type, one uses the reflective type_of function that the
enclosing toolkitx has to provide (line 14). 6

1| <instruction mnemonic="push” >

2| <format>

3 <sequence> <ul var="opcode’>18 <!—— Ildc ——>

4 <ul type="cp_index" var="cp_index" />

5 <implicit var="value” >constant_pool_value(cp-index)</implicit> < /sequence>
6 <sequence> <ul var="opcode” >3 <!—— iconst.0 ——>

7 <implicit var="value" >0</implicit> </sequence>

8 <sequence> <ul var="opcode”>17 <!—— sipush ——>

9 <i2 type="short” var="value” /> </sequence>

10 e
11 </format>

12 <stack> <form>

13 <before> <rest/> < /before>
14 <after> <operand type="type_of(value)” >value</operand>
15 <rest/> </after>

16, </form> < /stack>
17| </instruction>

Fig. 8. OPAL SPL specification of the ldc, iconst_0, and sipush instructions

3.5 Multiple Format Sequences, Single Logical Instruction

An instruction such as ldc, which may refer to an integer value in the constant
pool, is conceptually similar to instructions such as iconst_0 or sipush; all of them
push a constant value onto the operand stack. The primary difference between
the format sequences of ldc (Fig. 8, lines 3-5) and iconst_0 (lines 6-7) is that
the former’s operand resides in the constant pool. In contrast, sipush encodes its
operand explicitly in the bytecode stream as an immediate value (line 9).

6 In this case type_of could be supplanted by implicit_type (cf. Sec. 3.12) in conjunction with the
constant_pool_type function. However, type_of allows for a clearer specification.

63

EICHBERG

To facilitate standard control- and data-flow analyses, OPAL SPL abstracts away
from such details, so that similar instructions can be subsumed by more generic
instructions using explicit or implicit type and value bindings. A generic push
instruction (Fig. 8), e.g., subsumes all JVM instructions that just push a constant
value onto the stack. In this case the pushed value is either a computed value (line 5),
an implicit value (line 7), or an immediate operand (line 9).

3.6 Variable Operand Counts (invokevirtual, invokespecial, etc.)

Some instructions pop a variable number of operands, e.g., the four invoke instruc-
tions invokevirtual, invokespecial, invokeinterface, and invokestatic. In their case
the number of popped operands directly depends on the number of arguments of the
method. To support instructions that pop a variable number of operands, OPAL
SPL provides the list element (Fig. 9, line 8). Using the list element’s count at-
tribute, it is possible to specify a function that determines the number of operands
actually popped from the stack. It is furthermore possible, by using the loop_var
attribute, to specify a variable iterating over these operands. The loop variable (i)
can then be used inside the list element to specify the expected operands (line 10).
This enables specification of both the expected number and type of operands, i.e.,
of the method arguments (lines 8-10).

1| <instruction mnemonic="invokevirtual”’ >
<format>
<sequence> <ul var="opcode" >182
<u2 type="cp_index” var="cplndex" />
<implicit var="methodRef" >constant_pool_methodref(cplndex)</implicit> </sequence>

2

3

4

5

6 </format>
71 <stack> <form>
8

9

<before> <list loop_var="i" count="methodref_arg_count(methodref)” >
<operand type="methodref_arg_type(i,methodref)” />
10 </list>
11 <operand type="methodref_receiver_type(methodref)” />
12 <rest/> </before>
13 <after> <operand type="methodref_return_type(methodref)”’ />
14 <rest/> </after>

18] </form> < /stack>
16 <exceptions> <exception type="java.lang.NullPointerException” /> ... </exceptions>
17, </instruction>

Fig. 9. OPAL SPL specification of the invokevirtual instruction

Using functions (methodref_arg_count, methodref_arg type, ...) offloads the intri-
cate handling of the constant pool to externally supplied code (cf. Sec. 3.4)—the
enclosing toolkit; the OPAL specification language itself remains independent of
how the framework or toolkit under development stores such information.

3.7 Ezceptions

The specification of invokevirtual (Fig. 9) also makes explicit which exceptions
the instruction may throw (line 16). This information is required by control-flow
analyses and thus needs to be present in specifications. To identify the instructions
which may handle the exception the function (caught_by) needs to be defined by
the toolkit. This functions computes, given both the instruction’s address and the
type of the exception, the addresses of all instructions in the same method that

64

EICHBERG

handle the exception. Similar to the handling of the constant pool, OPAL SPL
thus offloads the handling of the exceptions attribute.

3.8 Variable-length Instructions (tableswitch, lookupswitch)

The support for variable-length instructions (tableswitch, lookupswitch) is similar
to the support for instructions with a variable stack size (cf. Sec. 3.6). In this
case, an elements element can be used to specify how many times (Fig. 10, line 7)
which kind of values (lines 8-9) need to be read. Hereby, the elements construct
can accommodate multiple sequence elements (lines 7-10).

1/ <instruction mnemonic="Ilookupswitch” transfers_control="always” >
2| <format>

3 <sequence> <ul var="opcode’ >171

4 <padding_bytes alignment="4" />

5 <i4 type="branchoffset” var="defaultOffset” />

6 <i4 type="int" var="npairsCount” />

7 <elements count="npairsCount” >

8 <i4 type="int" var="matchValue" />

9 <i4 type="branchoffset” var="branchoffset” />
10 < /elements> < /sequence>

11 </format>
12

13| </instruction>

Fig. 10. OPAL SPL specification of the lookupswitch instruction

The variable number of cases is, however, just one reason why tableswitch and
lookupswitch are classified as variable-length instructions; the JVM Specification
mandates that up to three padding bytes are inserted, to align the following format
elements on a four-byte boundary (line 4).

3.9 Single Instruction, Multiple Operand Stacks (dup2)

The JVM specification defines several instructions that operate on the stack in-
dependent of their operands’ types or—if we change the perspective—that behave
differently depending on the type of the operands present on the stack prior to their
execution. For example, the dup2 instruction (Fig. 11) duplicates the contents of
two one-word stack slots.

Instructions such as dup2 and dup2_x1 distinguish their operands by their com-
putational type (category 1 or 2) rather than by their actual type (int, reference,
etc.). This makes it possible to compactly encode instructions such as dup2 and
motivates the corresponding level in the type hierarchy (cf. Sec. 2.2). Additionally,
this requires that OPAL SPL supports multiple stack layouts.

In OPAL SPL, the stack is modeled as a list of operands, not as a list of slots as
discussed in the JVM specification. While the effect of an instruction such as dup2
is more easily expressed in terms of stack slots, the vast majority of instructions
naturally refers to operands. In particular, the decision to base the stack model on
operands rather than slots avoids explicit modeling of the higher and lower halves
of category-2-values, e.g., the high and low word of a 64 bit long operand.

65

EICHBERG

1| <instruction mnemonic="dup2" >

2 L.

3 <stack>

4 <form>

5 <before> <operand type="category_2_value” var="value” />

6 <rest /> </before>

7 <after> <operand type="category_2_value” >value</operand>
8 <operand type="category_2_value” >value</operand>
9 <rest /> </after>

10 < /form>

11 <form>

12 <before> <operand type="category_1_value” var="valuel” />
13 <operand type="category_1_value” var="value2" />

14 <rest /> </before>

15 <after> <operand type="category_1_value” >valuel</operand>
16 <operand type="category_1_value" >value2</operand>
17 <operand type="category_1_value” >valuel</operand>
18 <operand type="category_1_value” >value2</operand>
19 <rest /> </after>

20 < /form>
21 </stack>
22| </instruction >

Fig. 11. OPAL SPL specification of the dup2 instruction
3.10 (Conditional) Control Transfer Instructions (if, goto, jsr, ret)

To perform control-flow analyses it is necessary to identify those instructions that
may transfer control, either by directly manipulating the program counter or ter-
minating the current method. This information is specified using the instruction
element’s optional transfers_control attribute (Fig. 12, line 1). It specifies if con-
trol is transfered conditionally or always. The target instruction to which control is
transferred is identified by the values of type branchoffset or absolute_address. For
these two types the type system contains the meta-information (cf. Fig. 3) that the
values have to be interpreted either as relative or absolute program counters.
1/ <instruction mnemonic="ifgt" transfers_control =" conditionally” >
<format>
<sequence> <ul var="opcode" >157

2

3

4 <u2 type="branchoffset” var="branchoffset” /> </sequence>
5/ </format>

6

7

< /instruction >

Fig. 12. Specification of the ifgt instruction

3.11 Multibyte Opcodes and Modifiers (wide instructions, newarray)

The JVM instruction set consists mostly of instructions whose opcode is a single
byte, although a few instructions have longer opcode sequences. In most cases this
is due to the wide modifier, a single byte prefix to the instruction. In case of the
newarray instruction, however, a suffix is used to determine its precise effect. As
can be seen in Fig. 13, the parser needs to examine two bytes to determine the
correct format sequence.

3.12 Implicit Types and Type Constructors

The specification of newarray (Fig. 13) also illustrates the specification of implied
types and type constructors. As the JVM instruction set is a typed assembly lan-

66

EICHBERG

1| <instruction mnemonic="newarray" >

2 <format>

3 <sequence> <ul var="opcode" >188

4 <ul var="atype”’ >4

5 < implicit_type var="T" >boolean</implicit_type> < /sequence>
6 <sequence> <ul var="opcode” >188

7 <ul var="atype" >5

8 < implicit_type var="T">char</implicit_type> </sequence>

9

10 </format>
11 <stack> <form>

12 <before> <operand type="int" />

13 <rest/> </before>

14 <after> <operand type="array(1, T)" />
15 <rest/> </after>

16, </form> < /stack>
7

18 </instruction>

Fig. 13. OPAL SPL specification of the newarray instruction

guage, many instructions exist in a variety of formats, e.g., as iadd, ladd, fadd,
and dadd. The implicit_type construct is designed to eliminate this kind of redun-
dancy in the specification, resulting in a single, logical instruction: add. Similarily,
newarray makes use of type bindings (lines 5, 8).

But, to precisely model the effect of newarray on the operand stack, an additional
function that constructs a type is needed. Given a type and an integer, the function
array constructs a new type; here, a one-dimensional array of the base type (line 14).

3.18 Extension Mechanism

OPAL SPL has been designed with extensibility in mind. The extension point for
additional information is the instruction element’s appinfo child, whose content can
consist of arbitrary elements with a namespace other than OPAL SPL’s own.

To illustrate the mechanism, suppose that we want to create a Prolog represen-
tation for Java Bytecode, in which information about operators is explicit, i.e., in
which the ifgt instruction is an if instruction which compares two values using the
greater than operator, as illustrated by Fig. 14.

1 instr (METHODID, PROGRAM_COUNTER, if(gt, Branchoffset)).

Fig. 14. Prolog representation of an if instruction

To support this feature, we designed a small XML language to encode informa-
tion about operators. The additional information is specified using child elements
of the appinfo element as exemplified in Fig. 15, lines 2—4.

" '

1| <instruction mnemonic="ifgt" transfers_control =" conditionally” >
2| <appinfo> <cg:parameterized base="if" >

3 <cg:operator name="gt" />

4 < /cg:parameterized> < /appinfo>

5 ...

6/ </instruction>

Fig. 15. Application specific information.

67

EICHBERG

4 Validating Specifications

To validate an OPAL SPL specification, we have defined an XML Schema which en-
sures syntactic correctness of the specification and performs basic identity checking.
It checks, for example, that each declared type and each instruction’s mnemonic is
unique. Additionally, we have developed a program which analyzes a specification
and detects the following errors: (a) a format sequence does not have a unique pre-
fix path, (b) multiple format sequences of a single instruction do not agree in the
variables bound by them, (c¢) the number or type of function’s arguments is wrong
or its result is of the wrong type.

In addition to these errors, we warn about the following potential issues: (a)
a declared type, function or exception is not used, (b) a format sequence defines
no variable with the name opcode, (c) the same opcode value is used in sequences
that belong to different instruction definitions”, (d) an instruction mnemonic that
contains “if”, “goto”, “ret”, “jsr”, “jump”, “throw”, or “switch” does not set the
transfers_control attribute, (e) an instruction specifies more than one format se-
quence and more than one stack form. These additional checks have proven to be
useful to detect and fix (subtle) errors early on.

5 Evaluation

Correctness of the Specification

We have used the specification of the JVM’s instruction set [9] for the implemen-
tation of a highly flexible bytecode toolkit. The toolkit supports four representations
of Java bytecode: a native representation, which is a one-to-one representation of
the Java Bytecode; a higher-level representation, which abstracts away some details
of Java bytecode—in particular from the constant pool; an XML representation
which uses the higher-level representation; a Prolog-based representation of Java
Bytecode, which is also based on the higher-level representation.

We have extensively tested the developed framework and were able to import
all class files part of JDK 6, Tomcat 6.0.18, and Eclipse 3.5. Additionally, we have
compiled Apache Ant 1.7.1 with different compilers (javac and Eclipse’s built-in
compiler) and different compiler settings and were also able to decode these class
files. Hence, we are confident that the encoding of the JVM specification is correct.

Usefulness of the Approach

Based on the specification, we have developed two generators which are both
implemented using XSLT. The first XSLT transformation generates the classes to
represent all instructions and is 350 lines long. KEach generated class represents
an instruction as a Java object and offers the functionality to get an XML and a
Prolog representation of the concrete instance of an instruction. The second XSLT
transformation generates the parser for a code array which creates the instance of
the instruction classes on the fly. This transformation is another 300 lines long. We
compared this with the Bytecode Code Engineering Library (BCEL) [2] which uses

7 The decision to enable multiple sequences that contain the same opcode value was necessary to model
the newarray instruction.

68

EICHBERG

a similar approach for representing and handling instructions. When compared to
the instruction-related code of BCEL, the generator is between 15 and 20 times
smaller.

Another advantage of the approach is that changes that affect all instructions
are localized. For example, in case of the Prolog representation we tested several dif-
ferent representations which often affected all instructions. Nevertheless, in general
less than 40 lines of code of the generator needed to be changed.

6 Related Work

Applying XML technologies to Java bytecode is not a new idea [5]. The XML
serialization of class files, e.g., allows for their declarative transformation using
XSLT. The XMLVM [11] project aims to support not only the JVM instruction
set [9], but also the CLR instruction set [8]. This requires that at least the CLR’s
operand stack is transformed [12], as the JVM requires. The description of the
effect that individual CLR instructions have on the operand stack is, however, not
specified in an easily accessible format like OPAL SPL, but rather embedded within
the XSL transformations.

The rules of Hoare-style program logic can also serve as a specification of the
JVM instruction set [1]. While such a specification goes beyond OPAL SPL as
far the instructions’ effect on the VM’s state (operand stack, registers, etc.) is
concerned, it does not describe instruction formats and also groups instructions (cf.
Sec. 3.4) only implicitly, through derivation rules, if at all.

The Project Maxwell assembler system [10] is able to describe instruction for-
mats that are more complex than those commonly encountered in high-level inter-
mediate languages, namely those of the IA32, PowerPC, and SPARC instruction set
architectures. These descriptions are then used to generate assemblers and disas-
semblers as well as test cases for either. The system is unable, however, to describe
the instructions’ effect; only their format is described. Unlike OPAL SPL, these de-
scriptions are not made available in a language-independent format like XML, but
rather constructed programmatically, using a domain-specific language embedded
into Java.

Vmgen [6] is a generator for efficient interpreters for stack-based intermediate
languages. While it can also be used to generate code for register-based interme-
diate languages, it cannot describe such instructions declaratively, as can be done
using the load and store elements in OPAL SPL. Its descriptions also do not cover
the format of the bytecode itself; thus, it is not possible to generate a parser from
vmgen’s descriptions. One notable feature of vmgen is its (almost) uniform treat-
ment of operand stack and instruction stream, which simplifies the description of
instructions with immediate operands. OPAL SPL does not achieve the same degree
of uniformity because it describes how instructions are stored in class files.

7 Conclusion and Future Work

In this paper, we have first discussed a language for the specification of both the
format and the execution semantics of bytecode based instructions with respect

69

EICHBERG

to memory access. The language was used to encode the semantics of the JVM’s
instruction set. The resulting encoding of the JVM Specification was subsequently
used for the development of a Java Bytecode framework that reads in class files
and performs standard control- and data-flow analyses; e.g., to transform the stack-
based bytecode representation into an SSA representation. Our evaluation shows
that using the specification as the foundation for the development of bytecode toolk-
its significantly reduces the number of lines of code that need to be developed and
also reduces the development time of such toolkits.

In future work, we will investigate the use of OPAL SPL for the encoding of other
bytecode languages, such as the Common Intermediate Language. This would make
it possible to develop (control- and dataflow-) analyses with respect to the OPAL
SPL and to use the same analysis to analyze bytecode of different languages.

Acknowledgments

The authors would like to thank Lucas Satabin for implementing the type checker.
This work was supported by www.cased.de.

References

[1] Fabian Bannwart and Peter Miiller. A program logic for bytecode. Electronic Notes in Theoretical
Computer Science, 141(1):255-273, 2005. Proceedings of the First Workshop on Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE 2005).

[2] The Bytecode Engineering Library (BCEL). http://jakarta.apache.org/bcel/manual.html, 2006.

[3] Eric Bruneton. ASM 3.0: A Java bytecode engineering library. http://download.forge.objectweb.
org/asm/asm-guide.pdf, February 2007.

[4] Shigeru Chiba. Javassist - Java Programming Assistant 3.11.0.ga. http://www.csg.is.titech.ac.jp/
~chiba/javassist/, 2009.

[5] Michael Eichberg. BAT2XML: XML-based java bytecode representation. Electronic Notes in
Theoretical Computer Science, 141(1):93-107, 2005. Proceedings of the First Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE 2005).

[6] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. Vmgen: a generator of efficient virtual
machine interpreters. Software Practice & Experience, 32(3):265-294, 2002.

[7] IBM. The t. j. watson libraries for analysis. http://wala.sourceforge.net/, 2006.

[8] ISO/IEC, Geneva, Switzerland. Information technology — Common Language Infrastructure (CLI)
Partitions I to VI, ISO/IEC 23271:2006(E) edition, 2006.

[9] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley, 2nd edition,
1999.

[10] Bernd Mathiske, Doug Simon, and Dave Ungar. The Project Maxwell assembler system. In PPPJ 06:
Proceedings of the 4th International Symposium on Principles and Practice of Programming in Java,
pages 3-12, New York, NY, USA, 2006. ACM.

[11] Arno Puder. Byte code transformations using XSL stylesheets. In SNPD ’08: Proceedings of the 2008
Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, pages 563-568, Washington, DC, USA, 2008. IEEE Computer
Society.

[12] Arno Puder and Jessica Lee. Towards an XML-based bytecode level transformation framework.
Electronic Notes in Theoretical Computer Science, 253(5):97-111, 2009. Proceedings of the Fourth
Workshop on Bytecode Semantics, Verification, Analysis and Transformation (BYTECODE 2009).

[13] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville, and Vijay
Sundaresan. Optimizing Java bytecode using the Soot framework: Is it feasible? In Proceedings of the
9th International Conference on Compiler Construction (CC), volume 1781, 2000.

70

http://www.cased.de./
http://jakarta.apache.org/bcel/manual.html
http://download.forge.objectweb.org/asm/asm-guide.pdf
http://download.forge.objectweb.org/asm/asm-guide.pdf
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://wala.sourceforge.net/

ByteCode 2010

JRebel Tool Demo

Jevgeni Kabanov!

Dept. of Computer Science
Unaversity of Tartu
Tartu, Estonia

Abstract

JRebel started as an academical project that became a successful commercial product used by thousands
of developers worldwide. It extends the Java Virtual Machine with a mechanism that allows seamless
class reloading. It uses bytecode manipulation extensively, both for the just-in-time class translator and
numerous integrations with the Java SE and EE APIs. In this live demo we will show how it can be used
in real-life projects to cut development time by 8 to 18 per cent.

Keywords: bytecode, JRebel, ClassLoader, API, retroactive

1 Introduction

Java EE development day-to-day activities involves deploying the application to the
Java EE server. This step is necessary after the application has been compiled and
packaged into an archive as per Java EE specification. Every time developers want
to make changes to the running application they need to deploy it, which can take
from a few seconds in the best case to several minutes in the worst.

An alternative way to update an application is using the HotSwap protocol [1],
available from the Java EE debugger. This allows to update the application classes
without redeploying it. Unfortunately only a very restricted set of changes is al-
lowed; namely HotSwap allows changes to the method bodies, but does not allow
changing the class signature or inheritance hierarchy. Thus no new methods, fields
or constructors are allowed.

At the end of 2006 we came up with an idea for extending the Java virtual
machine with a mechanism that would allow to change the class bytecode beyond
the limits of the HotSwap protocol [2]. During 2007 we developed and released
a prototype initially code-named “Badger” and for the public release renamed to
“JavaRebel”. In 2009 we released the version 2.0, which supported a layer of in-
direction on top of the ClassLoader API that allowed the users to edit classes and

1 Email: ekabanov@gmail.com

KABANOV

resources in their workspace instead of packaging them into .WAR or .EAR archives
as per Java EE specification. We also introduced an extension API that allowed to
make use of JavaRebel features in third-party applications as well as build plugins
for JavaRebel to support changes in framework configuration. We also renamed the
tool once more to “JRebel” due to trademark issues.

When we started working on the tool most of the research was focused on using
ClassLoaders to dynamically update code [3] or on modifying JVMs to do so [4]. Re-
cently there has been more investigation into similar systems [5,6], but no industry
tools are available to compete with JRebel.

At the moment we estimate over ten thousand of JRebel users around the world.
This number includes commercial users as well as various otherwise licensed users,
e.g. Open Source developers and Scala developers who can request a free license.

The rest of the paper is organized as follows. In Section 2 we review the problem
and its scope, Section 3 gives a brief overview of the tool, Section 4 describes the
technical background and Section 5 covers the supporting artifacts and third-party
extensions.

This work was partially supported by the OU Tarkvara Tehnoloogia Aren-
duskeskus, Enterprise Estonia and Estonian Science Foundation grant No. 8421.

2 Problem Scope

In 2009 we conducted a survey reaching over 1000 Java developers to estimate the
amount of time spent in the redeploy phase of development. The survey asked how
long a server redeploy takes and how many times an hour they are performed and
is summarized by the following chart:

Time spent doing redeploys during
an hour of coding
33%

30% []

35%
30%
25% 7
20% - 17%
15% 7
10% A
5% 7 S/
0% -

% of respondents

5%

0%

<5 5-9 10-14 15-19 20-24 25-29 >30

Minutes / Hour

The average is about 10.5 minutes per hour, accounting for 17.5% of total
development time. The standard deviation is 8, which means that the actual per
cent varies quite a lot. The estimated number of Java developers worldwide is nine

72

KABANOV

million. Estimating conservatively that only half of them develop for Java EE we
have an estimate for the annual worldwide cost to the economy of $56,700,000,000
a year (assuming 48 working weeks a year, 5 hours of coding per day and a $30 per
hour salary).

3 Tool Overview

JRebel installs a -javaagent JVM plugin that monitors the classes and resources
in the workspace and propagates their changes to the running application. The
following types of changes are supported:

e Changes to Java classes beyond what is supported by HotSwap.

e Changes to framework configuration (e.g. Spring XML files and annotations,
Struts mappings, etc).

e Any changes to static resources (e.g. JSPs, HTMLs, CSSs, XMLs, .properties,
ete)

JRebel works by rewriting the bytecode of Java classes to enable versioning.
To do that we use just-in-time bytecode translation in a manner akin to dynamic
languages compilation and runtime support. This enables us to support changes to
Java class schema, though not to the type hierarchy.

Type of change | HotSwap | JRebel
Changes to method bodies | Yes Yes
Adding/removing methods | No Yes
Adding/removing constructors | No Yes
Adding/removing fields | No Yes
Replacing superclass | No No
Adding/removing implemented interfaces | No No

Since version 2.0 we extend the ClassLoader API to allow injecting classes and
resources from locations outside default classpath. We use this functionality to allow
our users to specify the layout of their projects on the filesystem using a rebel.xml
configuration file and make application servers read the classes and resources directly
from those projects, instead of the .WAR or .EAR archives as prescribed by the Java
EE specification. As most of the build phase time is spent packaging those classes
and resources into the archive, it allows us to save most of the time spent in that
phase.

To make the tool more convenient to use we provide IDE plugins for Eclipse,
IntelliJ IDEA and NetBeans. These plugins improve debugging with JRebel by
hiding the synthetic fields and methods introduced by the translation process. We
also provide a plugin for the Maven build system, that automatically generates the
rebel.xml configuration file necessary to make use of the project direct mapping
functionality.

73

KABANOV

4 Technical Background

To explain how JRebel works we need to start with the reasons why support for full
schema change was not implemented in Java HotSwap. This section draws mainly
on [7,8] and some private conversations with Thomas Wuerthinger.

When loaded into the JVM, an object is represented by a structure in mem-
ory, occupying a continuous region of memory with a specific size (its fields plus
metadata). In order to add a field, we would need to resize that structure, but
since nearby regions may already be occupied, we would need to relocate the whole
structure to a different region where there is enough free space to fit it in. Now,
since we're actually updating a class (and not just a single object) we would have
to do this to every object of that class.

Fortunately object relocation is something that Java does all the time. Java
garbage collectors relocate objects every time they compact the heap. However the
problem is that the abstraction of one heap is just that, an abstraction. The actual
layout of memory depends on the garbage collector that is currently active and,
to be compatible with all of them, the relocation would have to be implemented
in the active garbage collector. This, however, presents quite a challenge, as the
Sun JVM features at least four garbage collectors (some of them multi-threaded),
two JIT compilers and a multitude of hardware platforms and operating systems it
supports. Implementing this functionality in each of the garbage collectors and en-
suring compatibility with the other components of the environment is a challenging
enough task that since the 2001 when the initial HotSwap implementation the full
schema update has yet to make it into the Sun JVM.

It would seem that adding methods to classes would be easier, but due to opti-
mizations in the class layout (specifically inlined v-tables), it assumes resizing and
relocating the class structure, returning to the same issue.

How does JRebel solve this problem?—JRebel works on a different level of ab-
straction than HotSwap. Whereas HotSwap works at the virtual machine level and
is dependent on the inner workings of the JVM, JRebel makes use of two remark-
able features of the JVM abstract bytecode and classloaders. Classloaders allow
JRebel to recognize the moment when a class is loaded, then translate the bytecode
on-the-fly to create another layer of abstraction between the virtual machine and
the executed code.

The problem in reloading classes is that once a class has been loaded it cannot be
unloaded or changed; but we are free to load new classes as needed. To understand
how we could theoretically reload classes, lets take a look at the implementation of
JRuby [9].

Ruby is required to support any runtime changes to the object, including adding
fields and methods (albeit named differently). JRuby implements those features
on the JVM, by treating objects as not much more than a runtime map from
method names to their implementations and from field names to their values. The
implementations for those methods are contained in anonymously named classes
that are generated when the method is encountered. When a method is added,
JRuby generates a new anonymous class that includes the body of that method. As
each anonymous class has a unique name there are no issues loading them and as a

74

KABANOV

result the application is updated on-the-fly.

We could then use the same transformation as JRuby and split all Java classes
into a holder class and method body classes. Unfortunately, such an approach would
be subject to (at least) the following problems:

Perfomance Such a setup would mean that each method invocation would be
subject to indirection. We could optimize, but the application would be at least
an order of magnitude slower. Memory use would also skyrocket, as so many
classes are created.

Compatibility Although Java is a static language it includes some dynamic fea-
tures like reflection and dynamic proxies. If we apply the “JRuby” transformation
none of those features will work unless we replace the Reflection API with our
own classes, aware of the transformation.

Therefore, JRebel does not take such an approach. Instead we transform the
class into a frontend class with a signature compatible to the original and an anony-
mous backend class, a new version of which can be loaded when the original class is
updated. We rewrite all invocations among transformed classes introducing a level
of indirection where necessary. However we use advanced Just-In-Time compila-
tion techniques to inline as many indirections as we can, so as to keep performance
overhead to a minimum.

MyClass MyClass’ i MyClass 3

N - —

N e e e e = - - - ———

To demonstrate the extent of our optimization we chose the Chameneos [10]
benchmark that is highly concurrent and is implemented in multiple classes thus
needing a lot of indirection in a naive implementation. Running this benchmark
with JRebel agent enabled we can see that there is no discernible difference from
running it in vanilla configuration. Even if we update all of the classes in the
benchmark the overhead is still under 60%.

Time | Vanilla JRebel JRebel Updated
real | Om38.673s | 0m37.457s | 0m58.130s

user | 1m10.747s | 1m7.946s 1m38.661s

sys | Om0.821s | Om0.832s | Om1.317s

Sixty per cent may sound like a lot, but this implies that every single class in
the application is updated, which is an extraordinary case. We optimize heavily
to reduce overhead for the unchanged classes, as even a 60% overhead on updated
classes will translate to a negligible total overhead as only a small fraction of an
application is usually updated.

75

KABANOV

5 Artifacts and Extensions

The JRebel distribution includes an installer, extensive reference manual and con-
figuration wizard. Dozens of articles available from our website and third-party
publications describe various applications of JRebel in the real world. A support
forum with over 2000 posts is also available to our users.
Although JRebel is a commercial product, a significant portion of
its code 1is available as Open Source in the Subversion repository at
http://repos.zeroturnaround.com/svn/. The parts unavailable as Open Source
include the just-in-time translation engine and high-level rebel.xml handling.
The following Open Source artifacts are available from the Subversion repository:
Test suite To ensure the stability and compatibility of the product we have com-
piled a test suite that contains test cases for both JVM compatibility and appli-
cation server compatibility.

Tool plugins Plugins for Eclipse, IntelliJ IDEA, NetBeans and Maven.

JRebel SDK and utils The SDK and utility classes that support writing JRebel
plugins or using it in a third-party environment.

JRebel plugins Plugins for various servers (Tomcat, JBoss, Weblogic, ...) and

frameworks (Spring, Struts, ...).

The JRebel SDK enables third-party contributers to submit additional plugins
for JRebel. To date the plugins for Struts 2, Stripes, Wicket and Log4J have been
contributed.

References

[1] Java HotSwap, http://java.sun.com/j2se/1.4.2/docs/guide/jpda/enhancements.html#hotswap.

[2] Kabanov, Jevgeni, METHOD AND ARRANGEMENT FOR RE-LOADING A CLASS, 2008 (US
Patent Application 20080282266).

[3] Liang, S. and Bracha, G., Dynamic class loading in the Java virtual machine, ACM SIGPLAN Notices
33/10, ACM, 1998.

[4] Malabarba, Scott and Pandey, Raju and Gragg, Jeff and Barr, Earl and Barnes, J. Fritz, Runtime
Support for Type-Safe Dynamic Java Classes, ECOOP ’00: Proceedings of the 14th European
Conference on Object-Oriented Programming [337—-361], Springer-Verlag, London, 2000.

[5] Gregersen, A.R. and Jgrgensen, B.N., Eztending eclipse RCP with dynamic update of active plug-ins,
Journal of Object Technology 6/6 [67—89], 2007.

[6] Pukall, M. and Kistner, C. and Saake, G., Towards unanticipated runtime adaptation of Java
applications, Proceedings of the 15th Asia-Pacific Software Engineering Conference (APSEC) [85-92],
2009.

[7] Dmitriev, Mikhail, Towards flezible and safe technology for runtime evolution of java language
applications, OOPSLA Workshop on Engineering Complex Object-Oriented Systems for Evolution,
2001.

[8] Thomas Wuerthinger, Dynamic Code Evolution for the Java HotSpot(TM) Virtual Machine, 2009.
[9] Nutter, C.O. and Enebo, T.E., JRuby — Java powered Ruby implementation, 2003.

[10] Kaiser, C. and Pradat-Peyre, JF, Chameneos, a Concurrency Game for Java, Ada and Others.,
ACS/IEEE Int. Conf. AICCSAO03.

76

	preface.pdf
	main.pdf
	main.pdf
	Background
	Spec-tacular Tool
	Model and Analysis
	Future Work
	References

	main.pdf
	main.pdf
	shortbc.pdf
	Introduction
	Semantic domains and notation
	Modification and lookup notation
	Auxiliary definitions
	Additional remarks

	Semantics of instructions
	Instruction load
	Instruction store
	Instruction stackop
	Instruction cond
	Instruction iinc
	Instruction get
	Instruction put
	Instruction new
	Instruction monitor
	Instruction invoke
	Instruction return
	Instruction throw
	Instructions without semantics

	Conclusions
	References

	2010-bauml-bytecode-reconstruction.pdf
	Introduction
	Compatibility in Component Software
	Component Dependencies
	Type Compatibility in Component Applications
	A Brief Overview of OSGi
	Real Word Problem Example

	Component Type-Level Representation
	Type Representation Sources
	Obtaining Complete Bundle Type Representation

	Component Compatibility Determination
	Component Type Differences
	Differences and Compatibility
	Use Cases of The Method

	Related Work
	Conclusion
	References

	bc10_final.pdf
	Introduction
	Structural Coverage in Objective Caml by Esterel Technologies
	Code Coverage and MC/DC (Modified Condition/Decision Coverage)
	MLcov: an Objective Caml Code Coverage Tool
	New certified KCG

	Code Coverage with Non-Intrusive Tools: The Coverage Project
	An Objective Caml Virtual Machine in Objective Caml
	The Objective Caml Virtual Machine (Zam)
	Existing Objective Caml Virtual Machine Implementations
	Our New Implementation in Objective Caml itself

	Zamcov's code Coverage Tools
	Execution trace generation
	Machine Code Coverage
	Source Code Coverage

	Related and Future Work
	Other coverage tools in Objective Caml
	Other coverage tools for different virtual machines
	MC/DC for Zamcov

	Conclusion
	References

	main.pdf
	Introduction
	Specifying Bytecode Instructions
	Syntax
	Semantics

	Design Discussion
	Modeling the Stack Bottom ([language=JVMIS]athrow)
	Pure Register Instructions ([language=JVMIS]iinc)
	Interpretation of Arithmetic Instructions ([language=JVMIS]iinc, [language=JVMIS]add, [language=JVMIS]sub, etc.)
	Constant Pool Handling ([language=JVMIS]ldc)
	Multiple Format Sequences, Single Logical Instruction
	Variable Operand Counts ([language=JVMIS]invokevirtual, [language=JVMIS]invokespecial, etc.)
	Exceptions
	Variable-length Instructions ([language=JVMIS]tableswitch, [language=JVMIS]lookupswitch)
	Single Instruction, Multiple Operand Stacks ([language=JVMIS]dup2)
	(Conditional) Control Transfer Instructions (if, goto, jsr, ret)
	Multibyte Opcodes and Modifiers ([language=JVMIS]wide instructions, [language=JVMIS]newarray)
	Implicit Types and Type Constructors
	Extension Mechanism

	Validating Specifications
	Evaluation
	Related Work
	Conclusion and Future Work
	References

	kabanov-demo-bytecode2010.pdf
	Introduction
	Problem Scope
	Tool Overview
	Technical Background
	Artifacts and Extensions
	References

